Quasiconformal methods in analysis, geometry and dynamics
分析、几何和动力学中的拟共形方法
基本信息
- 批准号:1305233
- 负责人:
- 金额:$ 17.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI, Christopher Bishop, will study the geometric properties of conformal and quasiconformal maps, with an emphasis on the connections with other areas such as dynamics, computational geometry, numerical analysis and geometric measure theory. The proposal describes several areas that the PI will investigate using quasiconformal mappings as a primary tool. The first is the iteration theory of complex analytic functions on the plane. The PI has previously used quasiconformal methods to solve a number of problems in the field and plans to refine these techniques to attack several remaining open problems. The second area is to use quasiconformal maps and hyperbolic geometry in computational geometry, mostly in problems related to algorithms for meshing planar regions with optimal complexity and geometry. Obtaining similar results in three dimensions is one of the most important goals of the field, and the proposal describes some ideas for attacking this problem too. The final part of the proposal describes the dimension distortion properties of quasiconformal maps. This is one of the most interesting problems intrinsic to study of quasiconformal maps, but, as the proposal describes, can also be linked to famous open problems in computational geometry.The proposed work will investigate how combinatorial and discrete ideas yield new results in analysis and how ideas from conformal analysis and hyperbolic geometry can prove new theorems about discrete geometry and meshing. Conformal maps preserve angles; these maps have been intensively studied for over 150 years and are of fundamental importance to a wide variety of problems in analysis, geometry, probability, physics and engineering. Classically, conformal maps have been used in the study of various differential equations related to fluid flow, heat conduction and wave propagation. More recently, conformal maps have been fundamental to the study of statistical mechanics, percolation and random growth models. Quasiconformal maps allow a controlled amount of angle distortion. These maps are a flexible and extremely useful generalization of conformal maps that help us better understand the special case of conformal mappings, but also introduces many important new problems and techniques. The PI's previous work has used quasiconformal maps to give the best known algorithm for computing conformal maps onto polygons and the best known algorithms for meshing planar domains into triangles or quadrilaterals with optimal geometric properties. Such meshes play an important role in many numerical problems from computer graphs to finite element methods for PDEs and many of these methods work more effectively if the underlying mesh has good geometric properties. The proposed work will extend and sharpen the results already obtained and will use similar ideas to attack other problems that arise in dynamics and geometry.
PI,克里斯托弗·毕晓普,将研究共形和拟共形映射的几何性质,重点是与其他领域的联系,如动力学,计算几何,数值分析和几何测度理论。 该提案描述了PI将使用拟共形映射作为主要工具进行调查的几个领域。第一个是平面上复解析函数的迭代理论。 PI以前曾使用拟共形方法来解决该领域的一些问题,并计划改进这些技术来解决几个剩余的开放问题。第二个领域是在计算几何中使用拟共形映射和双曲几何,主要是在与最佳复杂性和几何形状的平面区域网格化算法相关的问题中。在三个维度上获得类似的结果是该领域最重要的目标之一,该提案也描述了解决这个问题的一些想法。建议的最后一部分描述了拟共形映射的维数失真性质。这是一个最有趣的问题内在的研究拟共形映射,但正如该提案所述,也可以链接到著名的开放问题在计算geometrical.The拟议的工作将探讨如何组合和离散的想法产生新的结果,在分析和思想如何从共形分析和双曲几何可以证明新的定理离散几何和网格。 保角保角映射这些地图已经被深入研究了150多年,对分析、几何、概率、物理和工程中的各种问题都具有根本的重要性。 经典上,保角映射已被用于研究与流体流动、热传导和波传播有关的各种微分方程。 最近,共形映射已基本的统计力学,渗流和随机增长模型的研究。 准共形映射允许控制角度失真量。这些映射是共形映射的一个灵活且非常有用的推广,帮助我们更好地理解共形映射的特殊情况,但也引入了许多重要的新问题和新技术。 PI以前的工作已经使用拟共形映射给出了最著名的算法,用于计算到多边形上的共形映射,以及最著名的算法,用于将平面域网格化为具有最佳几何特性的三角形或四边形。 这种网格在许多数值问题中起着重要的作用,从计算机图形到偏微分方程的有限元方法,如果底层网格具有良好的几何特性,这些方法中的许多方法会更有效地工作。 拟议的工作将扩展和锐化已经获得的结果,并将使用类似的想法来攻击其他问题中出现的动力学和几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Bishop其他文献
The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
新型类似物 1,24(S)-二羟基维生素 D2 在癌细胞系生长调节方面与 1,25-二羟基维生素 D3 等效。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2
- 作者:
Y. Levy;Knutson Jc;Christopher Bishop;S. Shany - 通讯作者:
S. Shany
Exploring Gender Roles and Gender Equality within the Evangelical Church
探索福音派教会内的性别角色和性别平等
- DOI:
10.36837/chapman.000037 - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens - 通讯作者:
R. Stevens
Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats
5-羟色胺转运体基因敲除对已建立的左旋多巴诱导的帕金森病大鼠运动障碍及基因表达的影响
- DOI:
10.1016/j.neuropharm.2024.110227 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:4.600
- 作者:
Grace McManus;Ashley Galfano;Carla Budrow;Natalie Lipari;Kuei Y. Tseng;Fredric P. Manfredsson;Christopher Bishop - 通讯作者:
Christopher Bishop
The burden of the present in Gareth Brookes, The Dancing Plague
加雷斯·布鲁克斯《跳舞的瘟疫》中当下的负担
- DOI:
10.1080/1472586x.2022.2050101 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Christopher Bishop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Bishop', 18)}}的其他基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
I-Corps: Repurposing Serotoninergic Compounds for Improved Treatment of Parkinson's Disease
I-Corps:重新利用血清素能化合物以改善帕金森病的治疗
- 批准号:
2148598 - 财政年份:2021
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
Quasiconformal Constructions in Analysis and Dynamics
分析和动力学中的拟共形结构
- 批准号:
1906259 - 财政年份:2019
- 资助金额:
$ 17.61万 - 项目类别:
Continuing Grant
Geometric Problems in Conformal Analysis, Dynamics, and Probability
共形分析、动力学和概率中的几何问题
- 批准号:
1608577 - 财政年份:2016
- 资助金额:
$ 17.61万 - 项目类别:
Continuing Grant
Analysis of conformal and quasiconformal maps
共形和拟共形映射的分析
- 批准号:
1006309 - 财政年份:2010
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0405578 - 财政年份:2004
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0103626 - 财政年份:2001
- 资助金额:
$ 17.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705957 - 财政年份:1987
- 资助金额:
$ 17.61万 - 项目类别:
Fellowship Award
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mixed-methods Digital Oral History: Enfolding semantic web technologies and historical-interpretative analysis
混合方法数字口述历史:包含语义网络技术和历史解释分析
- 批准号:
AH/Y007557/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Continuing Grant
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
mPFC Regulation of VTA Dopamine and GABA Neuronal Activity During Flexible Updating of Appetitive and Aversive Associations
mPFC 在灵活更新食欲和厌恶关联过程中对 VTA 多巴胺和 GABA 神经元活动的调节
- 批准号:
10748174 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant