Geometric Problems in Conformal Analysis, Dynamics, and Probability
共形分析、动力学和概率中的几何问题
基本信息
- 批准号:1608577
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conformal and holomorphic maps are fundamental to many areas of mathematics, physics, engineering and probability. These are two special kinds of maps that preserve angles and complex structures. For example, Brownian motion (a mathematical model of continuous random paths) can be studied using conformal analysis and the project will use this approach to investigate some well known problems, e.g., to determine what types of simple sets are covered by Brownian motion. Another focus of the project is the iteration theory of holomorphic functions. The PI will study the size, shape and behavior of the Julia and Fatou sets associated to entire functions (holomorphic functions defined on the whole plane). Traditionally, most work has focused on the special case of polynomials; the case of more general entire functions is known as "transcendental dynamics", but has been much less studied so far. The project will also consider several problems in analysis that can be attacked using ideas from discrete and computational geometry. Successful completion of this work could result in faster algorithms related to meshing, as used in graphics, medical imaging, and a wide variety of design and manufacturing applications.The project divides into several broad areas: transcendental dynamics, Brownian motion, and the interactions of analysis with computational geometry. Continuing earlier work, the PI will study problems such as computing the dimension of Julia sets of entire functions, investigating the existence of wandering domains with bounded orbits, and studying the escaping set (points that iterate to infinity). The PI will also work on related geometric problems for random sets such as Brownian motion, considering both well known questions (does Brownian motion cover any rectifiable arcs?) as well as more novel ones (is Brownian motion removable for conformal maps? Does the set of cut-points lie on a rectifiable curve?) Finally, the PI will work on extending his earlier algorithms for optimal meshing, triangulation and conformal mapping using ideas from analysis, geometry and topology. The most interesting generalization would be to three dimensions, where no rigorous complexity bounds are known, but where the most important applications lie. The proposal also considers problems in "pure" analysis that might be solved using strengthened versions of known results in computational geometry; one such problem is the connectedness of the space of chord-arc curves in the BMO topology; another is the factoring of general bi-Lipschitz maps into bi-Lipschitz maps with small constants.
共形和全态图是数学,物理,工程和概率的许多领域的基础。这是保留角度和复杂结构的两种特殊地图。例如,可以使用保形分析研究布朗运动(连续随机路径的数学模型),该项目将使用这种方法来研究一些众所周知的问题,例如,确定Brownian Motion涵盖了哪些类型的简单集。该项目的另一个重点是跨形功能的迭代理论。 PI将研究与整个功能相关的Julia和FATOU集的大小,形状和行为(整个平面上定义的全态函数)。传统上,大多数工作都集中在多项式的特殊情况下。更一般的整个功能的情况被称为“先验动力学”,但到目前为止研究得多。该项目还将考虑分析中的几个问题,这些问题可以使用离散和计算几何形状的想法攻击。成功完成这项工作可能会导致与网格划分相关的更快算法,如图形,医学成像以及各种各样的设计和制造应用。该项目分为多个广泛的领域:先验动力学,布朗运动,布朗运动以及分析与计算几何形状的相互作用。继续进行较早的工作,PI将研究诸如计算整个功能的朱莉娅集合的维度,研究具有有界轨道的徘徊域的存在,并研究逃逸集(迭代到无限的点)。 PI还将在相关的几何问题上处理诸如布朗尼运动之类的几何问题,考虑到众所周知的问题(布朗运动是否涵盖了任何可纠正的弧度?使用分析,几何和拓扑的想法。最有趣的概括将是三个维度,在三个维度上,没有严格的复杂性界限,而是最重要的应用所在。该提案还考虑了“纯”分析中的问题,这些问题可以使用计算几何形状的已知结果的增强版本来解决。一个问题是BMO拓扑中和弦曲线空间的连接性。另一个是将一般的Bi-Lipschitz图解到具有小常数的Bi-Lipschitz地图中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Bishop其他文献
The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
新型类似物 1,24(S)-二羟基维生素 D2 在癌细胞系生长调节方面与 1,25-二羟基维生素 D3 等效。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2
- 作者:
Y. Levy;Knutson Jc;Christopher Bishop;S. Shany - 通讯作者:
S. Shany
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens - 通讯作者:
R. Stevens
The burden of the present in Gareth Brookes, The Dancing Plague
加雷斯·布鲁克斯《跳舞的瘟疫》中当下的负担
- DOI:
10.1080/1472586x.2022.2050101 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Exploring Gender Roles and Gender Equality within the Evangelical Church
探索福音派教会内的性别角色和性别平等
- DOI:
10.36837/chapman.000037 - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Pulsed Neural Networks
- DOI:
10.7551/mitpress/5704.001.0001 - 发表时间:
1998-11 - 期刊:
- 影响因子:0
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Christopher Bishop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Bishop', 18)}}的其他基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
I-Corps: Repurposing Serotoninergic Compounds for Improved Treatment of Parkinson's Disease
I-Corps:重新利用血清素能化合物以改善帕金森病的治疗
- 批准号:
2148598 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Quasiconformal Constructions in Analysis and Dynamics
分析和动力学中的拟共形结构
- 批准号:
1906259 - 财政年份:2019
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Quasiconformal methods in analysis, geometry and dynamics
分析、几何和动力学中的拟共形方法
- 批准号:
1305233 - 财政年份:2013
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Analysis of conformal and quasiconformal maps
共形和拟共形映射的分析
- 批准号:
1006309 - 财政年份:2010
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0405578 - 财政年份:2004
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0103626 - 财政年份:2001
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705957 - 财政年份:1987
- 资助金额:
$ 22.16万 - 项目类别:
Fellowship Award
相似国自然基金
共形几何与CR几何中的分数阶算子相关问题研究
- 批准号:12271348
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
带边共形几何问题及其相关的几何不等式
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
带边共形几何问题及其相关的几何不等式
- 批准号:12271244
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
拟共形Teichmuller空间的度量几何及相关问题
- 批准号:12271017
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
共形几何中的若干问题
- 批准号:12171313
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Study on numerical algorithms for nonlinear optimization problems and their implementation
非线性优化问题的数值算法研究及其实现
- 批准号:
17K00039 - 财政年份:2017
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of approximation methods for cone optimization problems using semidefinite bases
使用半定基开发圆锥优化问题的近似方法
- 批准号:
17K18946 - 财政年份:2017
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A study on fixed point problems in metric spaces with geodesic structure and its applications
测地线结构度量空间中的不动点问题研究及其应用
- 批准号:
17K05372 - 财政年份:2017
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The fast solution of least squares problems and its applications.
最小二乘问题的快速求解及其应用.
- 批准号:
15K04768 - 财政年份:2015
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
From Scattering Problems in Quantum Mechanics to Correlation Functions in Conformal Field Theory
从量子力学中的散射问题到共形场论中的相关函数
- 批准号:
15H06641 - 财政年份:2015
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up