Deformations of Complex Structures
复杂结构的变形
基本信息
- 批准号:9800924
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prof. Bishop will investigate several aspects of geometry and analysis related to non-smooth objects such as limit sets of Kleinian groups, Brownian motion and quasi-conformal mappings. Among the specific goals are to extend his earlier application of harmonic analysis and heat kernel techniques to compute the exact size (in terms of Hausdorff measures) of the limit sets of Kleinian groups to new examples (e.g., manifolds with thin parts) and new sets (the conical limit set, the set of escaping geodesics,...). He will also attempt to extend Bowen's famous dichotomy to all divergence type Fuchsian groups, extending work of Sullivan, Astala, Zinsmeister, Jones and himself. Part of this is to further study the ``beta''s, a technical measure of how close a set is to a line segment at different scales, which is closely related to the study of the traveling salesman problem. He will also continue his work investigating the removable and non-removable sets for quasi-conformal mappings, geometric properties of Brownian motion, and other geometric-analytic questions in classical complex analysis.The proposal deals with a variety of geometric questions which are united by a desire to understand traditional concepts and calculations (e.g. compute the area of a region) in non-traditional and highly non-smooth cases. This is motivated by (at least) two points of view. First, a better understanding of the classical case can be obtained by seeing how it succeeds or fails in a more general setting; even the failures lead to new, interesting phenomena to investigate. Second, many applications of mathematics (polymers, fractures, shock waves, wavelet analysis, crystal growth,...) involve highly irregular and fractal objects, and we need to understand and calculate with such objects the way we have always done with much smoother quantities. For example, Brownian motion is a mathematical object which models random movement and is of tremendous intrinsic interest, as well as being fundamental to understanding many other random processes (e.g., shapes of long polymers chains, growth of crystals by random accretion, ...). However, Brownian motion is an extremely non-smooth process and various simple geometric questions about its random paths are still unknown. Another example is with the Kleinian groups mentioned above. These are symmetries in non-Euclidean geometry; as such, they are fundamental objects in topology and have been an area of intense investigation for many years. They can be associated with certain fractal objects (the limit sets) involving non-linear rescalings, where the non-linearity is of a very special type, and present a theoretical stepping stone between self-similar sets with linear rescalings (which are fairly well understood) and much more complicated rescalings found in rational dynamics and chaos theory.
毕晓普教授将研究与非光滑对象有关的几何和分析的几个方面,如克莱因群的极限集、布朗运动和拟共形映射。其中的具体目标是将他早期应用调和分析和热核技术来计算Klein群极限集的精确大小(以Hausdorff度量为单位)扩展到新的例子(例如,具有薄部分的流形)和新的集合(圆锥极限集、逃逸测地线的集合,等等)。他还将尝试将Bowen著名的二分法推广到所有发散型Fuchsian群,推广Sullivan、Astala、Zinsmeister、Jones和他自己的工作。其中一部分是为了进一步研究“贝塔”S,这是一种衡量集合在不同尺度上与线段的距离的技术度量,它与旅行商问题的研究密切相关。他还将继续他的工作,研究准共形映射的可去集和不可去集,布朗运动的几何性质,以及经典复分析中的其他几何分析问题。该建议处理各种几何问题,这些问题是由于希望理解非传统和高度非光滑情况下的传统概念和计算(例如计算区域面积)而结合在一起的。这是由(至少)两个观点推动的。首先,通过在更一般的环境中观察经典案例的成功或失败,可以更好地理解它;即使是失败,也会导致新的、有趣的现象需要研究。第二,数学的许多应用(聚合物、断裂、冲击波、小波分析、晶体生长……)涉及高度不规则和分形的物体,我们需要理解和计算这类物体,就像我们总是用更平滑的量来做的那样。例如,布朗运动是一个数学对象,它模拟随机运动,具有巨大的内在兴趣,也是理解许多其他随机过程的基础(例如,长聚合物链的形状,通过随机吸积生长晶体等)。然而,布朗运动是一个极其非光滑的过程,关于其随机路径的各种简单几何问题仍是未知的。另一个例子是上面提到的克莱恩集团。它们是非欧几里德几何中的对称性;因此,它们是拓扑学中的基本对象,多年来一直是一个密集研究的领域。它们可以与某些涉及非线性重标度的分形对象(极限集)联系在一起,其中非线性是一种非常特殊的类型,并在具有线性重标度的自相似集(这是相当好地理解的)和在有理动力学和混沌理论中发现的更复杂的重标度之间提供了理论上的垫脚石。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Bishop其他文献
The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
新型类似物 1,24(S)-二羟基维生素 D2 在癌细胞系生长调节方面与 1,25-二羟基维生素 D3 等效。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2
- 作者:
Y. Levy;Knutson Jc;Christopher Bishop;S. Shany - 通讯作者:
S. Shany
Exploring Gender Roles and Gender Equality within the Evangelical Church
探索福音派教会内的性别角色和性别平等
- DOI:
10.36837/chapman.000037 - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens - 通讯作者:
R. Stevens
Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats
5-羟色胺转运体基因敲除对已建立的左旋多巴诱导的帕金森病大鼠运动障碍及基因表达的影响
- DOI:
10.1016/j.neuropharm.2024.110227 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:4.600
- 作者:
Grace McManus;Ashley Galfano;Carla Budrow;Natalie Lipari;Kuei Y. Tseng;Fredric P. Manfredsson;Christopher Bishop - 通讯作者:
Christopher Bishop
The burden of the present in Gareth Brookes, The Dancing Plague
加雷斯·布鲁克斯《跳舞的瘟疫》中当下的负担
- DOI:
10.1080/1472586x.2022.2050101 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Christopher Bishop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Bishop', 18)}}的其他基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
I-Corps: Repurposing Serotoninergic Compounds for Improved Treatment of Parkinson's Disease
I-Corps:重新利用血清素能化合物以改善帕金森病的治疗
- 批准号:
2148598 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Quasiconformal Constructions in Analysis and Dynamics
分析和动力学中的拟共形结构
- 批准号:
1906259 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Geometric Problems in Conformal Analysis, Dynamics, and Probability
共形分析、动力学和概率中的几何问题
- 批准号:
1608577 - 财政年份:2016
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Quasiconformal methods in analysis, geometry and dynamics
分析、几何和动力学中的拟共形方法
- 批准号:
1305233 - 财政年份:2013
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Analysis of conformal and quasiconformal maps
共形和拟共形映射的分析
- 批准号:
1006309 - 财政年份:2010
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0405578 - 财政年份:2004
- 资助金额:
$ 23.48万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0103626 - 财政年份:2001
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705957 - 财政年份:1987
- 资助金额:
$ 23.48万 - 项目类别:
Fellowship Award
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 23.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
- 批准号:
9500557 - 财政年份:1995
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
- 批准号:
9204092 - 财政年份:1992
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
- 批准号:
9003361 - 财政年份:1990
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
- 批准号:
8701774 - 财政年份:1987
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
- 批准号:
8401280 - 财政年份:1984
- 资助金额:
$ 23.48万 - 项目类别:
Continuing Grant














{{item.name}}会员




