Deformations of Complex Structures

复杂结构的变形

基本信息

  • 批准号:
    9800924
  • 负责人:
  • 金额:
    $ 23.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-06-15 至 2002-05-31
  • 项目状态:
    已结题

项目摘要

Prof. Bishop will investigate several aspects of geometry and analysis related to non-smooth objects such as limit sets of Kleinian groups, Brownian motion and quasi-conformal mappings. Among the specific goals are to extend his earlier application of harmonic analysis and heat kernel techniques to compute the exact size (in terms of Hausdorff measures) of the limit sets of Kleinian groups to new examples (e.g., manifolds with thin parts) and new sets (the conical limit set, the set of escaping geodesics,...). He will also attempt to extend Bowen's famous dichotomy to all divergence type Fuchsian groups, extending work of Sullivan, Astala, Zinsmeister, Jones and himself. Part of this is to further study the ``beta''s, a technical measure of how close a set is to a line segment at different scales, which is closely related to the study of the traveling salesman problem. He will also continue his work investigating the removable and non-removable sets for quasi-conformal mappings, geometric properties of Brownian motion, and other geometric-analytic questions in classical complex analysis.The proposal deals with a variety of geometric questions which are united by a desire to understand traditional concepts and calculations (e.g. compute the area of a region) in non-traditional and highly non-smooth cases. This is motivated by (at least) two points of view. First, a better understanding of the classical case can be obtained by seeing how it succeeds or fails in a more general setting; even the failures lead to new, interesting phenomena to investigate. Second, many applications of mathematics (polymers, fractures, shock waves, wavelet analysis, crystal growth,...) involve highly irregular and fractal objects, and we need to understand and calculate with such objects the way we have always done with much smoother quantities. For example, Brownian motion is a mathematical object which models random movement and is of tremendous intrinsic interest, as well as being fundamental to understanding many other random processes (e.g., shapes of long polymers chains, growth of crystals by random accretion, ...). However, Brownian motion is an extremely non-smooth process and various simple geometric questions about its random paths are still unknown. Another example is with the Kleinian groups mentioned above. These are symmetries in non-Euclidean geometry; as such, they are fundamental objects in topology and have been an area of intense investigation for many years. They can be associated with certain fractal objects (the limit sets) involving non-linear rescalings, where the non-linearity is of a very special type, and present a theoretical stepping stone between self-similar sets with linear rescalings (which are fairly well understood) and much more complicated rescalings found in rational dynamics and chaos theory.
Bishop教授将研究与非平滑物体有关的几何形状和分析的几个方面,例如克莱尼亚组的极限集,布朗运动和准符合形式映射。 在具体目标中,他的早期应用谐波分析和加热内核技术以计算Kleinian群体的极限集的确切大小(根据Hausdorff度量)的确切大小(例如,较薄的零件的流形)和新集合(锥形限制集合,逃避地理学的集合,...)。 他还将试图将鲍恩(Bowen)著名的二分法延伸到所有分歧型富奇族(Fuchsian type Fluchsian)团体,扩展了沙利文(Sullivan),阿斯塔拉(Astala),Zinsmeister,琼斯(Jones)和他本人的作品。其中的一部分是进一步研究``beta''的技术,这是一种技术衡量,以衡量一组在不同尺度上的线段的距离,这与对旅行推销员问题的研究密切相关。 他还将继续他的工作调查,以用于准正形映射,布朗尼运动的几何特性以及在古典复合物分析中的其他几何分析问题的可拆卸和不可移动的集合。该提案涉及多种几何问题,这些问题涉及各种愿望了解传统概念和计算的愿望(例如,都不理解一个区域和不合格的区域)。 这是(至少)两种观点的动机。 首先,可以通过查看在更一般的环境中如何成功或失败来更好地理解经典案例;甚至失败也会导致新的有趣现象进行调查。 其次,数学(聚合物,断裂,冲击波,小波分析,晶体生长等)的许多应用都涉及高度不规则和分形对象,我们需要按照我们始终以多种更柔和的数量来理解和计算此类物体。 例如,布朗运动是一个数学对象,它模拟随机运动,并且具有巨大的内在兴趣,并且是理解许多其他随机过程的基础(例如,长聚合物链的形状,通过随机积聚的晶体生长,...)。但是,布朗运动是一个极为平滑的过程,关于其随机路径的各种简单几何问题仍然未知。 另一个例子是上面提到的kleinian群体。 这些是非欧盟几何形状中的对称性;因此,它们是拓扑中的基本对象,并且多年来一直是深入研究的领域。 它们可以与涉及非线性重塑的某些分形对象(极限集)相关联,在这些分类物体中,非线性具有非常特殊的类型,并在具有线性恢复的自相似套件之间存在理论上的步进石材(相当理解),并且在理性动力学和Chaos理论中发现了更为复杂的重新分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Bishop其他文献

The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
新型类似物 1,24(S)-二羟基维生素 D2 在癌细胞系生长调节方面与 1,25-二羟基维生素 D3 等效。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Y. Levy;Knutson Jc;Christopher Bishop;S. Shany
  • 通讯作者:
    S. Shany
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens
  • 通讯作者:
    R. Stevens
The burden of the present in Gareth Brookes, The Dancing Plague
加雷斯·布鲁克斯《跳舞的瘟疫》中当下的负担
  • DOI:
    10.1080/1472586x.2022.2050101
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Christopher Bishop
  • 通讯作者:
    Christopher Bishop
Exploring Gender Roles and Gender Equality within the Evangelical Church
探索福音派教会内的性别角色和性别平等
  • DOI:
    10.36837/chapman.000037
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Christopher Bishop
  • 通讯作者:
    Christopher Bishop
Pulsed Neural Networks
  • DOI:
    10.7551/mitpress/5704.001.0001
  • 发表时间:
    1998-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Bishop
  • 通讯作者:
    Christopher Bishop

Christopher Bishop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Bishop', 18)}}的其他基金

Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
  • 批准号:
    2303987
  • 财政年份:
    2023
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
I-Corps: Repurposing Serotoninergic Compounds for Improved Treatment of Parkinson's Disease
I-Corps:重新利用血清素能化合物以改善帕金森病的治疗
  • 批准号:
    2148598
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
Quasiconformal Constructions in Analysis and Dynamics
分析和动力学中的拟共形结构
  • 批准号:
    1906259
  • 财政年份:
    2019
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Geometric Problems in Conformal Analysis, Dynamics, and Probability
共形分析、动力学和概率中的几何问题
  • 批准号:
    1608577
  • 财政年份:
    2016
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Quasiconformal methods in analysis, geometry and dynamics
分析、几何和动力学中的拟共形方法
  • 批准号:
    1305233
  • 财政年份:
    2013
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Analysis of conformal and quasiconformal maps
共形和拟共形映射的分析
  • 批准号:
    1006309
  • 财政年份:
    2010
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
Computational and Conformal Geometry
计算和共形几何
  • 批准号:
    0705455
  • 财政年份:
    2007
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
  • 批准号:
    0405578
  • 财政年份:
    2004
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
  • 批准号:
    0103626
  • 财政年份:
    2001
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8705957
  • 财政年份:
    1987
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Fellowship Award

相似国自然基金

鸟撞载荷下复合材料复杂薄壁结构的损伤机理与变形模式研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构-磁场耦合控制下磁性异构超材料软模对板件复杂变形的全场动态调控作用和机理
  • 批准号:
    52275329
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
结构-磁场耦合控制下磁性异构超材料软模对板件复杂变形的全场动态调控作用和机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
鸟撞载荷下复合材料复杂薄壁结构的损伤机理与变形模式研究
  • 批准号:
    52202442
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
复杂结构AuSn-Au5Sn双相合金室温变形行为的反常相尺寸效应
  • 批准号:
    52161023
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
  • 批准号:
    22K03316
  • 财政年份:
    2022
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
  • 批准号:
    9500557
  • 财政年份:
    1995
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
  • 批准号:
    9204092
  • 财政年份:
    1992
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
  • 批准号:
    9003361
  • 财政年份:
    1990
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Deformations of Complex Structures
数学科学:复杂结构的变形
  • 批准号:
    8701774
  • 财政年份:
    1987
  • 资助金额:
    $ 23.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了