Analysis of conformal and quasiconformal maps
共形和拟共形映射的分析
基本信息
- 批准号:1006309
- 负责人:
- 金额:$ 20.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1006309Principal Investigator: Christopher BishopThe principal investigator will study the geometric properties of conformal and quasiconformal maps, with an emphasis on the connections with other areas such as numerical analysis, computational geometry, complex dynamics and geometric measure theory. He will continue his work on fast conformal mapping algorithms, including the class of Schwarz-Christoffel iterations. These include Davis' method and the CRDT algorithm of Driscoll and Vavasis as special cases, and other methods involving the medial axis and quasiconformal mappings. One of the basic themes is to start with certain quasiconformal maps that approximate the desired conformal map, but are easier to compute and have better properties. These maps have natural connections to several well known problems such as Brennan's conjecture, and the PI will investigate these connections. The PI will also continue his work on various related problems involving optimal meshing algorithms, diffusion limited aggregation, the geometry of Brownian motion, the quasiconformal Jacobian problem and conformal welding.A fundamental problem of mathematics and engineering is to quickly and accurately solve various differential equations related to fluid flow, heat conduction and wave propagation on complex regions. For 2-dimensional surfaces, a standard method is to use a conformal mapping (i.e., angle preserving on small scales) to replace the region with a simpler one, such as a disk or rectangle. This approach has been studied for over 150 years, but not until the 1980's did computers made conformal mapping practical for highly complex regions. The PI will investigate how to improve existing methods and develop new ones that are faster and more reliable. He will also investigate the theoretical behavior of conformal maps on extremely complex domains such as fractals and the connections between conformal maps and probability theory. The PI has already applied the insights gained from these problems to meshing. This is the process of dividing a complex region into simple pieces such as triangles. Meshing is a basic part of most numerical methods and the usefulness of a mesh in applications depends on the number of pieces (fewer is better) and their shapes (better to avoid small and large angles). It is difficult to construct a mesh which is good in both respects, but PI has used non-Euclidean geometry to construct 2-dimensional quadrilateral meshes with optimal size and shapes for simple polygons and is working to extend this to more general domains. Greater generality is needed in various problems involving crack formation, interfaces between materials and computer learning. Efficient meshing also has numerous applications in high-performance computing such as modeling surfaces for engineering and computer graphics. This award is jointly funded by the programs in Analysis and Geometric Analysis.
AbstractAward:DMS-1006309首席研究员:克里斯托弗·毕晓普首席研究员将研究共形和拟共形映射的几何性质,重点是与其他领域的联系,如数值分析,计算几何,复杂动力学和几何测度理论。他将继续他的工作,快速保形映射算法,包括类施瓦茨-克里斯托弗迭代。这些方法包括Davis方法和Drivel和Vavasis的CRDT算法作为特例,以及涉及中轴和拟共形映射的其他方法。 其中一个基本的主题是从某些拟共形映射开始,这些映射近似于所需的共形映射,但更容易计算并且具有更好的性质。这些地图与几个众所周知的问题有着天然的联系,比如布伦南猜想,PI将调查这些联系。PI还将继续他的工作在各种相关问题,包括最佳网格算法,扩散限制聚合,布朗运动的几何,拟共形雅可比问题和保角焊接。数学和工程的一个基本问题是快速准确地解决各种微分方程相关的流体流动,热传导和波在复杂区域的传播。 对于2维表面,标准方法是使用保角映射(即,在小尺度上保持角度),以用更简单的区域(例如圆盘或矩形)替换该区域。这种方法已经被研究了150多年,但直到20世纪80年代,计算机才使保角映射在高度复杂的区域中变得实用。 PI将研究如何改进现有方法,并开发更快、更可靠的新方法。他还将研究在极其复杂的领域,如分形和共形映射和概率论之间的连接共形映射的理论行为。PI已经将从这些问题中获得的见解应用于网格划分。这是将复杂区域划分为简单片段(如三角形)的过程。 网格划分是大多数数值方法的基本部分,网格在应用中的有用性取决于块的数量(越少越好)及其形状(最好避免小角度和大角度)。 很难构建一个在这两个方面都很好的网格,但PI使用非欧几何来构建具有简单多边形的最佳尺寸和形状的二维四边形网格,并正在努力将其扩展到更一般的领域。 在涉及裂纹形成、材料之间的界面和计算机学习的各种问题中需要更大的通用性。 高效网格化在高性能计算中也有许多应用,例如工程和计算机图形学的曲面建模。 该奖项由分析和几何分析项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Bishop其他文献
The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
新型类似物 1,24(S)-二羟基维生素 D2 在癌细胞系生长调节方面与 1,25-二羟基维生素 D3 等效。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2
- 作者:
Y. Levy;Knutson Jc;Christopher Bishop;S. Shany - 通讯作者:
S. Shany
Exploring Gender Roles and Gender Equality within the Evangelical Church
探索福音派教会内的性别角色和性别平等
- DOI:
10.36837/chapman.000037 - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens - 通讯作者:
R. Stevens
Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats
5-羟色胺转运体基因敲除对已建立的左旋多巴诱导的帕金森病大鼠运动障碍及基因表达的影响
- DOI:
10.1016/j.neuropharm.2024.110227 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:4.600
- 作者:
Grace McManus;Ashley Galfano;Carla Budrow;Natalie Lipari;Kuei Y. Tseng;Fredric P. Manfredsson;Christopher Bishop - 通讯作者:
Christopher Bishop
The burden of the present in Gareth Brookes, The Dancing Plague
加雷斯·布鲁克斯《跳舞的瘟疫》中当下的负担
- DOI:
10.1080/1472586x.2022.2050101 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Christopher Bishop - 通讯作者:
Christopher Bishop
Christopher Bishop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Bishop', 18)}}的其他基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
I-Corps: Repurposing Serotoninergic Compounds for Improved Treatment of Parkinson's Disease
I-Corps:重新利用血清素能化合物以改善帕金森病的治疗
- 批准号:
2148598 - 财政年份:2021
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
Quasiconformal Constructions in Analysis and Dynamics
分析和动力学中的拟共形结构
- 批准号:
1906259 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
Geometric Problems in Conformal Analysis, Dynamics, and Probability
共形分析、动力学和概率中的几何问题
- 批准号:
1608577 - 财政年份:2016
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
Quasiconformal methods in analysis, geometry and dynamics
分析、几何和动力学中的拟共形方法
- 批准号:
1305233 - 财政年份:2013
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0405578 - 财政年份:2004
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的几何
- 批准号:
0103626 - 财政年份:2001
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705957 - 财政年份:1987
- 资助金额:
$ 20.04万 - 项目类别:
Fellowship Award
相似国自然基金
共形光学元件内凹面的磁流变抛光技术研究
- 批准号:50675116
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Research Grant
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
CAREER: Formal Guarantees for Neurosymbolic Programs via Conformal Prediction
职业:通过保形预测对神经符号程序提供正式保证
- 批准号:
2338777 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
Multilegged amplitudes: from CFT to Higgs production at future colliders
多足振幅:从 CFT 到未来对撞机希格斯粒子的产生
- 批准号:
23K19047 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Imaging, Dosimetry and Radiobiology for α-particle Emitter Radiopharmaceutical Therapy
α 粒子发射器放射性药物治疗的成像、剂量测定和放射生物学
- 批准号:
10713709 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Theory for convergence of discrete surfaces with conformal structures
具有共形结构的离散表面的收敛理论
- 批准号:
23H01072 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
- 批准号:
23KJ0540 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
A decellularized porcine placenta matrix hydrogel for management of radiation-induced proctitis
用于治疗放射性直肠炎的脱细胞猪胎盘基质水凝胶
- 批准号:
10599727 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics
CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值
- 批准号:
EP/X042618/1 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Research Grant