Global Aspects of the N-Body Problem
N 体问题的全局方面
基本信息
- 批准号:1305844
- 负责人:
- 金额:$ 18.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Newtonian N-body problem suffers (or enjoys) two difficulties not shared by the typical dynamical systems of general theory: collision singularities which render the flow incomplete, and symmetries which make all its periodic orbits degenerate. The investigator and his colleague eliminate these two difficulties. They eliminate collision singularities by Levi-Civita regularization, Kuustaanheimo-Steifel regularization or McGehee blow-up. They eliminate the symmetries by symplectic reduction and invariant theory. They call the resulting regularized reduced flow the "global regularization." This flow is complete and has the minimum number of degrees of freedom possible among for a flow encoding the N-body problem. Given the global regularization, the investigator and his colleague study previously inaccessible problems within the N-body problem, such as the dynamical and variational nature of collision-collision solutions, and the existence or lack of existence of a symbolic dynamics for the planar zero-angular momentum three-body problem whose 3 symbols are the 3 types of syzygies (collinearities). Imagine the moon going around the earth, the earth going around the sun, and the sun spinning around the galaxy. The dominant force in the large scale dynamics of the universe is the attractive force of gravity and is responsible for the large scale rotational type motions of celestial bodies. The N-body equations are the equations governing this motion. ("N" stands for the number of bodies.) When two bodies get close the forces get large to the point that when the bodies collide the forces become infinity. This infinity is called a "collision singularity." If the whole universe is translated, or rotated some fixed amount, the motion remains identical and so there are extra variables in the usual N-body equations, namely the variables describing the "origin" and "axes" of the universe. The investigator and his collaborator eliminate the collision singularities, and the extra variables in the N-body equations. These eliminations yield a potentially more useful system of equations for the motion, a system free of infinities which may provide a good platform from which to solve some of the many open problems about one of the dominant dynamical behaviors going on in our universe.
牛顿的N体问题有两个困难是一般理论的典型动力学系统所没有的:使流动不完整的碰撞奇异性,以及使其所有周期轨道退化的对称性。调查员和他的同事排除了这两个困难。他们通过Levi-Civita正则化、Kuustaanheimo-Steifel正则化或麦基希blow-up来消除碰撞奇异性。 他们通过辛约化和不变量理论消除对称性。他们把得到的正则化约化流称为“全局正则化”。“这个流程是完整的, 编码N体问题的流中可能的最小自由度数。考虑到全局正则化,研究者和他的同事研究了N体问题中以前无法解决的问题,例如碰撞-碰撞解的动力学和变分性质,以及平面零角动量三体问题的符号动力学的存在或不存在,其3个符号是3种类型的syzygies(共线性)。 想象一下,月亮绕着地球转,地球绕着太阳转,太阳绕着银河系转。在宇宙大尺度动力学中占主导地位的力是引力的吸引力,它是天体大尺度旋转运动的原因。 N体方程是控制这种运动的方程。(“N”代表机构数量。) 当两个物体靠近时,力会变大,当两个物体碰撞时,力会变得无穷大。 这个无穷大被称为“碰撞奇点”。如果整个宇宙平移或旋转一定的量,运动保持不变,因此在通常的N体方程中有额外的变量,即描述宇宙的“原点”和“轴”的变量。 研究者和他的合作者消除了碰撞奇点,以及N体方程中的额外变量。这些消除产生了一个潜在的更有用的运动方程系统,一个没有无穷大的系统,它可以提供一个很好的平台来解决我们宇宙中发生的主要动力学行为之一的许多悬而未决的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Montgomery其他文献
Approximate path decompositions of regular graphs
正则图的近似路径分解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Richard Montgomery;Alp Muyesser;A. Pokrovskiy;Benny Sudakov - 通讯作者:
Benny Sudakov
Ramsey numbers of bounded degree trees versus general graphs
有界度树与一般图的拉姆齐数
- DOI:
10.1016/j.jctb.2025.02.004 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.200
- 作者:
Richard Montgomery;Matías Pavez-Signé;Jun Yan - 通讯作者:
Jun Yan
The reductionist ideal in cognitive psychology
- DOI:
10.1007/bf00484795 - 发表时间:
1990-11-01 - 期刊:
- 影响因子:1.300
- 作者:
Richard Montgomery - 通讯作者:
Richard Montgomery
Geodesics in Jet Space
- DOI:
10.1134/s1560354722020034 - 发表时间:
2022-04-05 - 期刊:
- 影响因子:0.800
- 作者:
Alejandro Bravo-Doddoli;Richard Montgomery - 通讯作者:
Richard Montgomery
Resolving singularities with Cartan’s prolongation
- DOI:
10.1007/s11784-008-0080-7 - 发表时间:
2008-08-08 - 期刊:
- 影响因子:1.100
- 作者:
Richard Montgomery;Vidya Swaminathan;Mikhail Zhitomirskii - 通讯作者:
Mikhail Zhitomirskii
Richard Montgomery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Montgomery', 18)}}的其他基金
Variational and Topological Approaches to the Three-body Problem
三体问题的变分和拓扑方法
- 批准号:
0303100 - 财政年份:2003
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
Variational Structure of Collisions in the Three-Body Problem
三体问题中碰撞的变分结构
- 批准号:
0072336 - 财政年份:2000
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
Periodic Orbits, Magnetic Fields, and Other Topics in Symplectic Geometry
周期轨道、磁场和辛几何中的其他主题
- 批准号:
9704763 - 财政年份:1997
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonholonomic Control and Gauge Theory
数学科学:非完整控制和规范理论
- 批准号:
9400515 - 财政年份:1994
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
U.S.-Brazil Workshop in Dynamics and Control of Multi-Body Systems; Rio de Janeiro, Brazil; March 1-5, 1993
美国-巴西多体系统动力学与控制研讨会;
- 批准号:
9114133 - 财政年份:1992
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807219 - 财政年份:1988
- 资助金额:
$ 18.99万 - 项目类别:
Fellowship Award
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Topological aspects of quantum many-body systems: Symmetry-protected ingappable phases and anomalies
量子多体系统的拓扑方面:对称保护的不可应用相和异常
- 批准号:
19K14608 - 财政年份:2019
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Practical Aspects of Body Communication Systems
身体通讯系统的实用方面
- 批准号:
515386-2017 - 财政年份:2017
- 资助金额:
$ 18.99万 - 项目类别:
Applied Research and Development Grants - Level 1
Verification of relaxation effects on the physical and mental aspects of hand bath in comparison with whole-body bathing
与全身沐浴相比,验证手浴对身心方面的放松效果
- 批准号:
16K20738 - 财政年份:2016
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The natural historic notions (body, sexuality and typology) and their ideologic aspects in Ledoux's architectural projects
勒杜建筑项目中的自然历史概念(身体、性和类型学)及其意识形态方面
- 批准号:
24720062 - 财政年份:2012
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Philosophical Study on the Cultural and Educational Aspects Of Human Body
人体文化教育方面的哲学研究
- 批准号:
18700495 - 财政年份:2006
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Universal aspects of Malti-ergodic phase space structure in many body hamiltonian dynamics
多体哈密顿动力学中马尔蒂遍历相空间结构的普遍方面
- 批准号:
15540376 - 财政年份:2003
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
- 批准号:
0207339 - 财政年份:2002
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
- 批准号:
0318532 - 财政年份:2002
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
CHOLINERGIC ASPECTS OF THE CAROTID BODY IN SLEEP APNEA
睡眠呼吸暂停中颈动脉体的胆碱能方面
- 批准号:
6527697 - 财政年份:2000
- 资助金额:
$ 18.99万 - 项目类别:
CHOLINERGIC ASPECTS OF THE CAROTID BODY IN SLEEP APNEA
睡眠呼吸暂停中颈动脉体的胆碱能方面
- 批准号:
6233698 - 财政年份:2000
- 资助金额:
$ 18.99万 - 项目类别:














{{item.name}}会员




