Generalized Steady-State Ab Initio Laser Theory and Applications

广义稳态从头算激光理论与应用

基本信息

  • 批准号:
    1307632
  • 负责人:
  • 金额:
    $ 31.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis award supports theoretical research and education to advance the theoretical description and design of novel laser systems with complex media and multiple scattering playing a central role. Many novel modern laser systems involve complex resonator geometries such micro-cavities, photonic crystals and even random lasers based on disordered scattering media with gain. These lasers have a wide range of potential applications and are challenging to simulate and understand using conventional methods. The PI has developed a method, known as steady-state ab initio laser theory, that provides a tractable way to simulate and design as well as new physical insights into their behavior. The method agrees with full time-dependent numerical solutions of the laser equations with much less computational effort.The PI will generalize his steady-state ab initio laser theory with an aim to develop a unified framework for describing many different laser systems. The PI will extend the theory to describe multi-transition lasers and semiconductor gain media, including the effects of gain diffusion, and injection-locking of lasers. New types of lasing modes are found when certain lasers are non-uniformly pumped in space; this behavior is related to the appearance of exceptional points in the relevant wave equations, where two solutions merge. These phenomena will be extensively studied to elucidate their implications. A first principles theory of quantum effects in lasers will be obtained by combining the steady-state ab initio laser theory, which provides the classical scattering matrix of the laser, with input-output theory, which describes the scattered quantum operators. Quantum fluctuations determine the laser linewidth and photon statistics, which can be predicted with no free or phenomenological parameters with the PI's approach. The PI intends the extended theory to become a computational tool for the design of applied laser systems for technological purposes such as communications, quantum information processing, spectrometry, projectors, optical coherence tomography and imaging. The extension of the approach to semiconductor gain media will lead to improvements in the modeling of quantum cascade and conventional semiconductor lasers. An open source computational tool for laser design using the approach pioneered by the PI is being developed and will be made available to researchers in academia and industry in the course of this project.NONTECHNICAL SUMMARYThis award supports theoretical research and education focused on improving the capability to understand and design novel laser systems, which are fundamental tools in research across the sciences, and a basic technology underlying the modern economy. Lasers are non-linear systems and also involve complex patterns of wave propagation within and outside the laser, hence the theory of these devices is quite challenging. New materials and materials systems play an important role in shaping potential laser technologies. This award supports the development of theory and related computational algorithms to enhance to enable quantitative solutions to the equations describing novel laser systems under current development, hence allowing better and more efficient designs for these systems. Important potential applications for the research are in the areas of communications, quantum information processing, spectrometry, biological sensing, projectors, optical coherence tomography and imaging. A spin-off from the theory is the concept of the "anti-laser," a novel device for selectively absorbing light with only very specific properties. An open source computational tool for laser design using the approach pioneered by the PI is being developed and will be made available to researchers in academia and industry in the course of this project.
该奖项支持理论研究和教育,以推进复杂介质和多重散射发挥核心作用的新型激光系统的理论描述和设计。许多新型的现代激光系统涉及复杂的谐振腔几何结构,如微腔、光子晶体,甚至是基于增益无序散射介质的随机激光器。这些激光器具有广泛的潜在应用,并且使用传统方法模拟和理解具有挑战性。PI已经开发了一种方法,称为稳态从头算激光理论,它提供了一种易于处理的方法来模拟和设计,以及对其行为的新的物理见解。该方法与激光方程的全时变数值解一致,计算量大大减少。PI将推广他的稳态从头算激光理论,目的是建立一个统一的框架来描述许多不同的激光系统。PI将扩展理论来描述多跃迁激光器和半导体增益介质,包括增益扩散的影响,以及激光器的注入锁定。当某些激光器在空间中被非均匀泵浦时,发现了新的激光模式;这种行为与相关波动方程中两个解合并的异常点的出现有关。这些现象将被广泛研究以阐明其含义。将提供激光经典散射矩阵的稳态从头算激光理论与描述散射量子算子的输入输出理论相结合,得到激光量子效应的第一性原理理论。量子涨落决定了激光线宽和光子统计量,这可以用PI的方法在没有自由参数或现象参数的情况下进行预测。PI打算将扩展理论作为一种计算工具,用于设计用于通信、量子信息处理、光谱分析、投影仪、光学相干断层扫描和成像等技术目的的应用激光系统。将该方法扩展到半导体增益介质将导致量子级联和传统半导体激光器建模的改进。目前正在开发一种开源的激光设计计算工具,该工具使用PI首创的方法,并将在该项目的过程中提供给学术界和工业界的研究人员。该奖项支持理论研究和教育,重点是提高理解和设计新型激光系统的能力,这是跨科学研究的基本工具,也是现代经济的基础技术。激光是非线性系统,并且还涉及激光内外复杂的波传播模式,因此这些装置的理论是相当具有挑战性的。新材料和新材料体系在塑造潜在的激光技术方面发挥着重要作用。该奖项支持理论和相关计算算法的发展,以增强当前发展中描述新型激光系统的方程的定量解决方案,从而允许这些系统更好,更有效的设计。该研究的重要潜在应用领域包括通信、量子信息处理、光谱分析、生物传感、投影仪、光学相干层析成像和成像。从这个理论衍生出来的一个概念是“反激光”,这是一种新的装置,可以选择性地吸收只有非常特定性质的光。目前正在开发一种开源的激光设计计算工具,该工具使用PI首创的方法,并将在该项目的过程中提供给学术界和工业界的研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfred Stone其他文献

Alfred Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alfred Stone', 18)}}的其他基金

Coherent Control of Light Propagation and Absorption in Complex Media and Resonators
复杂介质和谐振器中光传播和吸收的相干控制
  • 批准号:
    1743235
  • 财政年份:
    2018
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Coherent perfect absorption, and coherent control of absorption and amplification in optical microstructures with parity-time-reversal symmetry
具有宇称时间反转对称性的光学微结构中的相干完美吸收以及吸收和放大的相干控制
  • 批准号:
    1068642
  • 财政年份:
    2011
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Semiclassical and Quantum Theory of Open and Complex Lasers
开放复杂激光器的半经典和量子理论
  • 批准号:
    0908437
  • 财政年份:
    2009
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Fluctuation Phenomena and Measurement Theory in Mesoscopic Electronic and Optical Systems
介观电子和光学系统中的涨落现象和测量理论
  • 批准号:
    0408638
  • 财政年份:
    2004
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Mesoscopic Electronics and Optics
介观电子学和光学
  • 批准号:
    0084501
  • 财政年份:
    2000
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
"Q-Control of Microcavity Resonators for Physics and Optoelectronics"
“物理和光电子学微腔谐振器的 Q 控制”
  • 批准号:
    9612200
  • 财政年份:
    1996
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Transport and Thermodynamic Properties of Mesoscopic Systems
介观系统的输运和热力学性质
  • 批准号:
    9215065
  • 财政年份:
    1992
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    8658135
  • 财政年份:
    1987
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Regulation of Steady-State Hematopoiesis by Microbiota-Driven IFN-I Signaling
微生物驱动的 IFN-I 信号传导对稳态造血的调节
  • 批准号:
    10678151
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
Fabrication of a highly selective photocatalyst for methane conversion by controlling photocatalyst surface structures combined with quasi-steady state operando spectroscopy
通过控制光催化剂表面结构结合准稳态操作光谱制备用于甲烷转化的高选择性光催化剂
  • 批准号:
    22KJ3098
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: EAR-PF: Investigating spatiotemporal variability of forearc mantle wedge serpentinization and rheology during non-steady state subduction
博士后奖学金:EAR-PF:研究非稳态俯冲过程中弧前地幔楔形蛇纹石化和流变学的时空变化
  • 批准号:
    2305636
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Fellowship Award
Advancing Steady-State and Dynamic Operation of Islanded Hybrid AC-DC Microgrids
推进孤岛混合交直流微电网的稳态和动态运行
  • 批准号:
    RGPIN-2018-04343
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Discovery Grants Program - Individual
Steady-State and Transient Properties of Strongly Correlated Single Molecule Junctions
强相关单分子连接的稳态和瞬态特性
  • 批准号:
    2154323
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
  • 批准号:
    10543156
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
Impact of polyamines on ILC3 function at steady state and in preclinical model of colitis
多胺对稳态和结肠炎临床前模型中 ILC3 功能的影响
  • 批准号:
    10528082
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
Twofold Reduction in Gadolinium Dose for Brain MRI Exams using a Novel Unbalanced T1 Relaxation-Enhanced Steady-State (uT1RESS) Technique
使用新型不平衡 T1 弛豫增强稳态 (uT1RESS) 技术将脑 MRI 检查的钆剂量减少两倍
  • 批准号:
    10507378
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
Linking steady-state cytokine signaling to alveolar macrophage function in homeostasis and lung infection
将稳态细胞因子信号传导与体内平衡和肺部感染中的肺泡巨噬细胞功能联系起来
  • 批准号:
    10816167
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
Evaluation of Heat Transfer Characteristics Considering Thermal Contact Resistance between Sintered Ag Particles and Metallic Solid Using Steady-State Method
考虑烧结银颗粒与金属固体之间的热接触热阻的传热特性评估采用稳态法
  • 批准号:
    22K14196
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了