Conformal Geometry and Asymptotically Hyperbolic Manifolds
共形几何和渐近双曲流形
基本信息
- 批准号:1308266
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1308266, Principal Investigator: C. Robin GrahamThe investigator will carry out several research projects studying various aspects of conformal geometry and asymptotically hyperbolic metrics. These include investigation of boundary rigidity for asymptotically hyperbolic metrics, investigation of minimal submanifolds of products of asymptotically hyperbolic spaces with compact manifolds, study of boundary terms for conformally invariant integrals, and study of twisted Dirac operators on asymptotically hyperbolic manifolds and relation to conformally invariant operators on the boundary. The main objectives are to further understanding of these geometries and their relationship. The methods are analytic, geometric, and algebraic, with an intimate connection between these different aspects of the study.This project will focus on the relationship between two different geometric structures: conformal geometry on the one hand and asymptotically hyperbolic geometry on the other. Conformal geometry is the study of properties of space which depend only on angles but not on distances. Hyperbolic geometry involves spaces of negative curvature, in which the analogues of straight lines separate more than in usual flat space. The asymptotic structure of hyperbolic geometry is related to conformal geometry on the lower dimensional boundary at infinity. Several projects will study the relationship between these geometries. Apart from the intrinsic geometric interest, one motivation is the AdS/CFT correspondence in physics, a proposed holographic correspondence for certain physical phenomena. In recent years, the AdS/CFT correspondence has been used to model many strongly coupled physical theories, for instance in condensed matter physics. The proposed activity will further enable the development of human resources through educationally oriented activities of the investigator, including advising, mentoring and teaching graduate students, and curricular development. International cooperation and partnership will be promoted through collaboration between the investigator and researchers in Japan and France. Ties between the mathematics and physics communities will be enhanced. The results will be effectively disseminated through attendance and speaking at meetings and conferences and through posting and publication of articles.
摘要奖:DMS 1308266,主要研究者:C.罗宾格雷厄姆调查员将进行几个研究项目,研究共形几何和渐近双曲度量的各个方面。 这些包括调查的边界刚性渐近双曲度量,调查的最小子流形的产品的渐近双曲空间的紧致流形,研究边界条件的共形不变积分,并研究扭曲狄拉克运营商的渐近双曲流形和关系,共形不变的运营商的边界。 主要目的是进一步了解这些几何形状及其关系。 该方法是分析,几何和代数,与这些不同方面的研究之间的密切联系。这个项目将集中在两个不同的几何结构之间的关系:保角几何一方面和渐近双曲几何另一方面。 保形几何是研究空间的性质,这些性质只依赖于角度,而不依赖于距离。 双曲几何涉及负曲率的空间,其中直线的类似物比通常的平坦空间分离得更多。 双曲几何的渐近结构与无穷远处低维边界上的共形几何有关。 几个项目将研究这些几何形状之间的关系。 除了内在的几何兴趣,一个动机是物理学中的AdS/CFT对应,一种针对某些物理现象的全息对应。 近年来,AdS/CFT对应已被用于模拟许多强耦合物理理论,例如凝聚态物理。 拟议的活动将通过调查员的教育活动,包括向研究生提供咨询、指导和教学以及课程编制,进一步促进人力资源的开发。 将通过调查员与日本和法国的研究人员之间的协作促进国际合作和伙伴关系。 数学界和物理界之间的联系将得到加强。 将通过出席各种会议和在会上发言以及通过张贴和发表文章来有效传播成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Robin Graham其他文献
Inhomogeneous Ambient Metrics, in "Symmetries and Overdetermined Systems of Partial Differential Equations
非齐次环境度量,“偏微分方程的对称性和超定系统”
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
C. Robin Graham;Kengo Hirachi - 通讯作者:
Kengo Hirachi
Clifford-Klein Forms of Non-Riemannian Homogeneous Spaces. (4 lectures)
非黎曼齐次空间的 Clifford-Klein 形式。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
C. Robin Graham;Kengo Hirachi;T. Kobayashi - 通讯作者:
T. Kobayashi
Scalar boundary invariants and the Bergman kernel
- DOI:
10.1007/bfb0078958 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
C. Robin Graham - 通讯作者:
C. Robin Graham
An edge-of-the-wedge theorem for hypersurface CR functions
- DOI:
10.1007/bf02930756 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael G. Eastwood;C. Robin Graham - 通讯作者:
C. Robin Graham
Edge of the Wedge Theory in Hypo-analytic Manifolds
低解析流形中的楔边理论
- DOI:
10.1081/pde-120025493 - 发表时间:
2001 - 期刊:
- 影响因子:1.9
- 作者:
M. Eastwood;C. Robin Graham - 通讯作者:
C. Robin Graham
C. Robin Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Robin Graham', 18)}}的其他基金
Conformal Geometry and Asymptotically Hyperbolic Metrics
共形几何和渐近双曲度量
- 批准号:
0906035 - 财政年份:2009
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Conformal Geometry and Asymptotically Hyperbolic Metrics
共形几何和渐近双曲度量
- 批准号:
0505701 - 财政年份:2005
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Problems Related to Conformal and CR Geometry
与共形和 CR 几何相关的问题
- 批准号:
0204480 - 财政年份:2002
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Parabolic Invariant Theory and Geometric Analysis
数学科学:抛物线不变理论和几何分析
- 批准号:
9303497 - 财政年份:1993
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations
数学科学:偏微分方程
- 批准号:
8908167 - 财政年份:1989
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations
数学科学:偏微分方程
- 批准号:
8702986 - 财政年份:1987
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations in Geometry and Several Complex Variables
数学科学:几何中的偏微分方程和几个复变量
- 批准号:
8501754 - 财政年份:1985
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8114177 - 财政年份:1981
- 资助金额:
$ 18.9万 - 项目类别:
Fellowship Award
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant