Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response

具有离散响应的高维相关或异构横截面数据的半参数推理

基本信息

  • 批准号:
    1007603
  • 负责人:
  • 金额:
    $ 17.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Substantial advancement has been achieved over the past decade in high-dimensional data analysis with diverging number of covariates. However, when the research interest is focused on modeling the relationship between the response variable and a high-dimensional vector of covariates, most existing work only applies when the response variable is continuous and often requires stringent conditions such as independence or homogeneity. Many fundamental problems remain unsolved for high-dimensional data with discrete responses, especially when the standard modeling assumptions are not satisfied. This project aims to develop new statistical theory, methodology and algorithms for analyzing high-dimensional correlated or heterogeneous cross-sectional data with binary or count responses. More specifically, the investigator will (1) rigorously study the asymptotic theory, including consistency and asymptotic normality, of the semiparametric procedure of generalized estimating equations in the new diverging p asymptotic framework; (2) investigate generalized estimating equations based variable selection procedures for high-dimensional longitudinal and spatially correlated data; and (3) investigate the theory and methodology of sparse quantile regression, where the number of parameters may greatly exceed sample size, for analyzing heterogeneous data with possibly discrete responses.The prevalence of high-dimensional binary and count data in various scientific fields, such as biomedical and health sciences, economics, social sciences and environmental studies, demands new statistical theory, methodology and software. Many important issues in analyzing high-dimensional binary or count data, especially in the presence of correlation or heterogeneity, have not been systematically studied. Moreover, existing work based on the full likelihood or the independence assumption in the high-dimensional setting cannot be readily applied. This project will make significant and timely contribution to the general theory and methodology of high-dimensional data analysis in the diverging p framework. Such theories are critical for guiding practical data analysis. Undergraduate and graduate students, especially those from underrepresented groups, will be encouraged to participate in this research project.
在过去的十年中,在高维数据分析中已经取得了实质性的进展,不同数量的协变量。然而,当研究兴趣集中在响应变量和协变量的高维向量之间的关系建模时,大多数现有的工作仅适用于响应变量是连续的,并且通常需要严格的条件,如独立性或同质性。对于具有离散响应的高维数据,许多基本问题仍未解决,特别是当标准建模假设不满足时。本项目旨在开发新的统计理论、方法和算法,用于分析具有二元或计数响应的高维相关或异质横截面数据。 更具体地说,研究者将(1)在新的发散p渐近框架下严格研究广义估计方程的半参数过程的渐近理论,包括一致性和渐近正态性;(2)研究基于广义估计方程的高维纵向和空间相关数据的变量选择过程;(3)研究参数数目可能大大超过样本容量的稀疏分位数回归的理论和方法,用于分析具有可能离散响应的异质数据。如生物医学和卫生科学、经济学、社会科学和环境研究等领域的统计学研究需要新的统计理论、方法和软件。在分析高维二进制或计数数据时,特别是在相关性或异质性存在的情况下,许多重要问题尚未得到系统的研究。此外,现有的工作的基础上的充分的可能性或独立性假设在高维设置不能很容易地应用。本项目将对发散p框架下高维数据分析的一般理论和方法做出重要而及时的贡献。这些理论对于指导实际数据分析至关重要。本科生和研究生,特别是那些来自代表性不足的群体,将被鼓励参加这个研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan Wang其他文献

A Compact Routing based Mapping System for the Locator/ID Separation Protocol (LISP)
一种基于紧凑路由的定位器/ID分离协议(LISP)映射系统
  • DOI:
    10.5120/ijca2015906380
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Huq;H. Flinck;L. J. Cowen;D. Farinacci;V. Fuller;D. Meyer;D. Farinacci;Darrel Lewis;D. Meyer;V. Fuller;P. Poyhonen;Johanna Heinonen;V. Khare;Dan Jen;Xin Zhao;Yaoqing Liu;D. Massey;Lan Wang
  • 通讯作者:
    Lan Wang
Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks.
基于多个口语任务的中国人轻度认知障碍识别。
  • DOI:
    10.3233/jad-201387
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianqi Wang;Yin Hong;Quanyi Wang;Rongfeng Su;Manwa Lawrence Ng;Jun Xu;Lan Wang;Nan Yan
  • 通讯作者:
    Nan Yan
Destabilization of AETFC through C/EBP alpha-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation
C/EBP α 介导的 LYL1 抑制导致 AETFC 不稳定,导致 t(8;21) 白血病细胞分化
  • DOI:
    10.1038/s41375-019-0398-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Zhang Meng Meng;Liu Na;Zhang Yuan Liang;Rong Bowen;Wang Xiao Lin;Xu Chun Hui;Xie Yin Yin;Shen Shuhong;Zhu Jiang;Nimer Stephen D;Chen Zhu;Chen Sai Juan;Roeder Robert G;Lan Fei;Lan Wang;Huang Qiu Hua;Sun Xiao Jian
  • 通讯作者:
    Sun Xiao Jian
Risk Assessment and Profiling of Co-occurring Contaminations with Mycotoxins
霉菌毒素共存污染的风险评估和分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Wang;Aibo Wu
  • 通讯作者:
    Aibo Wu
On-Chip THz Dynamic Manipulation Based on Tunable Spoof Surface Plasmon Polaritons
基于可调谐欺骗表面等离子体激元的片上太赫兹动态操控
  • DOI:
    10.1109/led.2019.2940144
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ting Zhang;Hongxin Zeng;Lan Wang;Feng Lan;Zongjun Shi;Ziqiang Yang;Yaxin Zhang;Qiwu Shi;Xiaobo Yang;Shixiong Liang;Yuan Fang;Fanzhong Meng;Song Xubo;Yuncheng Zhao
  • 通讯作者:
    Yuncheng Zhao

Lan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan Wang', 18)}}的其他基金

FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
  • 批准号:
    1952373
  • 财政年份:
    2020
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    2023755
  • 财政年份:
    2020
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940160
  • 财政年份:
    2019
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
  • 批准号:
    1743598
  • 财政年份:
    2017
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
  • 批准号:
    1629769
  • 财政年份:
    2016
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512267
  • 财政年份:
    2015
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
  • 批准号:
    1344495
  • 财政年份:
    2014
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
  • 批准号:
    1308960
  • 财政年份:
    2013
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
  • 批准号:
    1040036
  • 财政年份:
    2010
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
  • 批准号:
    0721645
  • 财政年份:
    2007
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant

相似海外基金

The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
  • 批准号:
    2310981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
Can one size fit all? - High-Resolution 3D Genome Spatial Organization Inference with Generalizable Models
一种尺寸可以适合所有人吗?
  • 批准号:
    10707587
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
Safe and Robust Causal Inference for High-Dimensional Complex Data
高维复杂数据的安全稳健的因果推理
  • 批准号:
    2311291
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了