FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
基本信息
- 批准号:1952373
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid development of technology has led to the tremendous growth of large-scale heterogeneous data in science, economics, engineering, healthcare, and many other disciplines. For example, in a modern health information system, electronic health records routinely collect a large amount of information on many patients from heterogeneous populations across different disease categories. Such data provide unique opportunities to understand the association between features and outcomes across different subpopulations. Existing approaches have not fully addressed the formidable computational and statistical challenges. To tap into the true potential of information-rich data, this project will develop a new computational and statistical paradigm and solid theoretical foundation for analyzing large-scale heterogeneous data. In addition the project will also provide research training opportunities for graduate students. The project will build a unified, quantile-modeling based framework with an overarching goal of achieving effectiveness and reliability in analyzing heterogeneous data, especially when both the number of potential explanatory variables and the sample size are large. The specific goals are (1) to develop resampling-based inference for large-scale heterogeneous data; (2) to develop Bayesian algorithms and scalable and interpretable structure-aware approach for better inference; (3) to develop quantile-optimal decision rule estimation and inference with many covariates; (4) to develop novel estimation and inference procedure for large-scale quantile regression under censoring. The project will address some of the key barriers in scalability to data size and dimensionality, exploration of heterogeneity and structures, need for robustness, and the ability to make use of incomplete observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致了科学、经济、工程、医疗保健和许多其他学科中大规模异构数据的巨大增长。例如,在现代健康信息系统中,电子健康记录常规地收集关于来自不同疾病类别的异质群体的许多患者的大量信息。这些数据提供了独特的机会,以了解不同亚群之间的特征和结果之间的关联。现有的方法还没有完全解决可怕的计算和统计的挑战。为了挖掘信息丰富的数据的真正潜力,该项目将开发一种新的计算和统计范式,并为分析大规模异构数据奠定坚实的理论基础。此外,该项目还将为研究生提供研究培训机会。该项目将建立一个统一的,基于分位数建模的框架,其总体目标是在分析异构数据时实现有效性和可靠性,特别是当潜在的解释变量和样本量都很大时。具体目标是:(1)为大规模异质数据开发基于重采样的推理;(2)开发贝叶斯算法和可扩展和可解释的结构感知方法,以实现更好的推理;(3)开发具有许多协变量的分位数最优决策规则估计和推理;(4)开发新的估计和推理过程,用于大规模删失下的分位数回归。该项目将解决数据大小和维度的可扩展性、异质性和结构的探索、鲁棒性需求以及利用不完整观测结果的能力方面的一些关键障碍。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rejoinder to “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”
对“一种无需调整的稳健且高效的高维回归方法”的反驳
- DOI:10.1080/01621459.2020.1843865
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Wang, Lan;Peng, Bo;Bradic, Jelena;Li, Runze;Wu, Yunan
- 通讯作者:Wu, Yunan
A Tuning-free Robust and Efficient Approach to High-dimensional Regression
- DOI:10.1080/01621459.2020.1840989
- 发表时间:2020-10
- 期刊:
- 影响因子:3.7
- 作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
- 通讯作者:Lan Wang;Bo Peng;Jelena Bradic;Runze Li;Y. Wu
High‐dimensional quantile regression: Convolution smoothing and concave regularization
- DOI:10.1111/rssb.12485
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Kean Ming Tan;Lan Wang;Wen-Xin Zhou
- 通讯作者:Kean Ming Tan;Lan Wang;Wen-Xin Zhou
Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes
- DOI:10.1111/biom.13337
- 发表时间:2019-11
- 期刊:
- 影响因子:1.9
- 作者:Y. Wu;Lan Wang
- 通讯作者:Y. Wu;Lan Wang
Model-Assisted Uniformly Honest Inference for Optimal Treatment Regimes in High Dimension
- DOI:10.1080/01621459.2021.1929246
- 发表时间:2021-05
- 期刊:
- 影响因子:3.7
- 作者:Y. Wu;Lan Wang;H. Fu
- 通讯作者:Y. Wu;Lan Wang;H. Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Wang其他文献
A Compact Routing based Mapping System for the Locator/ID Separation Protocol (LISP)
一种基于紧凑路由的定位器/ID分离协议(LISP)映射系统
- DOI:
10.5120/ijca2015906380 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Huq;H. Flinck;L. J. Cowen;D. Farinacci;V. Fuller;D. Meyer;D. Farinacci;Darrel Lewis;D. Meyer;V. Fuller;P. Poyhonen;Johanna Heinonen;V. Khare;Dan Jen;Xin Zhao;Yaoqing Liu;D. Massey;Lan Wang - 通讯作者:
Lan Wang
Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks.
基于多个口语任务的中国人轻度认知障碍识别。
- DOI:
10.3233/jad-201387 - 发表时间:
2021-05 - 期刊:
- 影响因子:0
- 作者:
Tianqi Wang;Yin Hong;Quanyi Wang;Rongfeng Su;Manwa Lawrence Ng;Jun Xu;Lan Wang;Nan Yan - 通讯作者:
Nan Yan
Destabilization of AETFC through C/EBP alpha-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation
C/EBP α 介导的 LYL1 抑制导致 AETFC 不稳定,导致 t(8;21) 白血病细胞分化
- DOI:
10.1038/s41375-019-0398-8 - 发表时间:
2019 - 期刊:
- 影响因子:11.4
- 作者:
Zhang Meng Meng;Liu Na;Zhang Yuan Liang;Rong Bowen;Wang Xiao Lin;Xu Chun Hui;Xie Yin Yin;Shen Shuhong;Zhu Jiang;Nimer Stephen D;Chen Zhu;Chen Sai Juan;Roeder Robert G;Lan Fei;Lan Wang;Huang Qiu Hua;Sun Xiao Jian - 通讯作者:
Sun Xiao Jian
Risk Assessment and Profiling of Co-occurring Contaminations with Mycotoxins
霉菌毒素共存污染的风险评估和分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lan Wang;Aibo Wu - 通讯作者:
Aibo Wu
On-Chip THz Dynamic Manipulation Based on Tunable Spoof Surface Plasmon Polaritons
基于可调谐欺骗表面等离子体激元的片上太赫兹动态操控
- DOI:
10.1109/led.2019.2940144 - 发表时间:
2019-09 - 期刊:
- 影响因子:4.9
- 作者:
Ting Zhang;Hongxin Zeng;Lan Wang;Feng Lan;Zongjun Shi;Ziqiang Yang;Yaxin Zhang;Qiwu Shi;Xiaobo Yang;Shixiong Liang;Yuan Fang;Fanzhong Meng;Song Xubo;Yuncheng Zhao - 通讯作者:
Yuncheng Zhao
Lan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Wang', 18)}}的其他基金
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
2023755 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
- 批准号:
1940160 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
- 批准号:
1743598 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
- 批准号:
1629769 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
- 批准号:
1344495 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
- 批准号:
1308960 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
- 批准号:
1007603 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1040036 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
- 批准号:
0721645 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant