Collaborative Research: High-Dimensional Projection Tests and Related Topics

合作研究:高维投影测试及相关主题

基本信息

  • 批准号:
    1512267
  • 负责人:
  • 金额:
    $ 7.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Although high-dimensional data analysis has become the most active research area in statistics, there are still many challenging unsolved problems which call for the development of new methods and theory. This project aims to develop new statistical tools and software to statistical modeling and inference on high-dimensional data. The proposed research is expected to significantly enhance the availability of statistical tools and software for analysis of high-dimensional data, which have frequently been collected in many research areas including genomics, biomedical imaging, functional magnetic resonance imaging, tomography, tumor classifications and finance. Hence, the proposed work is expected to benefit a broad range of scientists and researchers in various fields. Considerable attention has been devoted to high-dimensional estimation and sparsity recovery over the last 10 years, but much less is known about hypothesis testing. In this project, the Pis first plan to develop new projection Hotelling's test and chi-squares tests for high-dimensional one-sample and two-sample mean problems. The tests are distinguished from the existing ones in that they are based on optimal projection directions that are derived to achieve optimal power performance. The PIs further propose an effective data-driven method to estimate the optimal projection direction by a sample-splitting strategy. The proposed procedure can be easily carried out. They plan to investigate the estimation of the sparsity optimal projection direction via regularization methods. Linear discriminant analysis has been hugely successful in classification, but most of the existing procedures cannot handle diverging number of classes. In this project, they also plan to study ultrahigh dimensional linear discriminant analysis with a diverging number of classes and develop new procedures enable researchers to apply low-dimensional linear discriminant analysis techniques for ultrahigh-dimensional linear discriminant analysis, and make ultrahigh-dimensional linear discriminant analysis with a diverging number of classes computationally feasible in practice. This model and associated new methodology have high potential for big data analysis. The PIs plan to continue collaborating with engineers, meteorologists, public health science researchers and prevention researchers and introduce the proposed methodology to scientists beyond statistics and biostatistics. The PIs plan to disseminate the research results through publications, conference presentations and software distribution.
虽然高维数据分析已成为统计学中最活跃的研究领域,但仍有许多具有挑战性的问题尚未解决,需要新的方法和理论的发展。本项目旨在开发新的统计工具和软件,对高维数据进行统计建模和推理。预计拟议的研究将大大提高用于分析高维数据的统计工具和软件的可用性,这些数据经常在许多研究领域收集,包括基因组学,生物医学成像,功能性磁共振成像,断层扫描,肿瘤分类和金融。因此,预计拟议的工作将使各个领域的广泛科学家和研究人员受益。在过去的10年里,高维估计和稀疏恢复得到了相当多的关注,但对假设检验的了解却少得多。在这个项目中,PI首先计划为高维单样本和双样本均值问题开发新的投影Hotelling检验和卡方检验。这些测试与现有的测试的区别在于,它们基于最佳投影方向,这些方向是为了实现最佳功率性能而导出的。PI进一步提出了一种有效的数据驱动的方法来估计最佳投影方向的样本分裂策略。建议的程序可以很容易地执行。他们计划通过正则化方法研究稀疏最佳投影方向的估计。线性判别分析在分类中取得了巨大的成功,但大多数现有的程序不能处理不同数量的类。在这个项目中,他们还计划研究具有发散类数的多维线性判别分析,并开发新的程序,使研究人员能够将低维线性判别分析技术应用于超高维线性判别分析,并使具有发散类数的超高维线性判别分析在实际计算中可行。这种模型和相关的新方法在大数据分析方面具有很高的潜力。PI计划继续与工程师,气象学家,公共卫生科学研究人员和预防研究人员合作,并向统计学和生物统计学之外的科学家介绍拟议的方法。研究所计划通过出版物、会议介绍和软件分发来传播研究成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan Wang其他文献

A Compact Routing based Mapping System for the Locator/ID Separation Protocol (LISP)
一种基于紧凑路由的定位器/ID分离协议(LISP)映射系统
  • DOI:
    10.5120/ijca2015906380
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Huq;H. Flinck;L. J. Cowen;D. Farinacci;V. Fuller;D. Meyer;D. Farinacci;Darrel Lewis;D. Meyer;V. Fuller;P. Poyhonen;Johanna Heinonen;V. Khare;Dan Jen;Xin Zhao;Yaoqing Liu;D. Massey;Lan Wang
  • 通讯作者:
    Lan Wang
Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks.
基于多个口语任务的中国人轻度认知障碍识别。
  • DOI:
    10.3233/jad-201387
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianqi Wang;Yin Hong;Quanyi Wang;Rongfeng Su;Manwa Lawrence Ng;Jun Xu;Lan Wang;Nan Yan
  • 通讯作者:
    Nan Yan
Destabilization of AETFC through C/EBP alpha-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation
C/EBP α 介导的 LYL1 抑制导致 AETFC 不稳定,导致 t(8;21) 白血病细胞分化
  • DOI:
    10.1038/s41375-019-0398-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Zhang Meng Meng;Liu Na;Zhang Yuan Liang;Rong Bowen;Wang Xiao Lin;Xu Chun Hui;Xie Yin Yin;Shen Shuhong;Zhu Jiang;Nimer Stephen D;Chen Zhu;Chen Sai Juan;Roeder Robert G;Lan Fei;Lan Wang;Huang Qiu Hua;Sun Xiao Jian
  • 通讯作者:
    Sun Xiao Jian
Risk Assessment and Profiling of Co-occurring Contaminations with Mycotoxins
霉菌毒素共存污染的风险评估和分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Wang;Aibo Wu
  • 通讯作者:
    Aibo Wu
On-Chip THz Dynamic Manipulation Based on Tunable Spoof Surface Plasmon Polaritons
基于可调谐欺骗表面等离子体激元的片上太赫兹动态操控
  • DOI:
    10.1109/led.2019.2940144
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ting Zhang;Hongxin Zeng;Lan Wang;Feng Lan;Zongjun Shi;Ziqiang Yang;Yaxin Zhang;Qiwu Shi;Xiaobo Yang;Shixiong Liang;Yuan Fang;Fanzhong Meng;Song Xubo;Yuncheng Zhao
  • 通讯作者:
    Yuncheng Zhao

Lan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan Wang', 18)}}的其他基金

FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
  • 批准号:
    1952373
  • 财政年份:
    2020
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    2023755
  • 财政年份:
    2020
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940160
  • 财政年份:
    2019
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
NeTS: Student Travel Support for the 2017 SIGCOMM Conference
NeTS:2017 年 SIGCOMM 会议的学生旅行支持
  • 批准号:
    1743598
  • 财政年份:
    2017
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
CRI-New: Collaborative: Building the Core NDN Infrastructure
CRI-New:协作:构建核心 NDN 基础设施
  • 批准号:
    1629769
  • 财政年份:
    2016
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
  • 批准号:
    1344495
  • 财政年份:
    2014
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Cooperative Agreement
New Developments on Quantile Regression Analysis of Censored Data: Theory, Methodology and Computation
截尾数据分位数回归分析的新进展:理论、方法和计算
  • 批准号:
    1308960
  • 财政年份:
    2013
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Semiparametric Inference for High-dimensional Correlated or Heterogeneous Cross-sectional Data with Discrete Response
具有离散响应的高维相关或异构横截面数据的半参数推理
  • 批准号:
    1007603
  • 财政年份:
    2010
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
  • 批准号:
    1040036
  • 财政年份:
    2010
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
NeTS-FIND: Collaborative Research: Enabling Future Internet innovations through Transit wire (eFIT)
NeTS-FIND:协作研究:通过传输线实现未来互联网创新 (eFIT)
  • 批准号:
    0721645
  • 财政年份:
    2007
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402728
  • 财政年份:
    2024
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310974
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319711
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: EDGE CMT: A four-dimensional genotype-phenotype map of poison frog skin color
合作研究:EDGE CMT:毒蛙肤色的四维基因型-表型图
  • 批准号:
    2319712
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 7.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了