Real Time Nanoscale Observations of Localized Corrosion in Metallic Films
金属薄膜局部腐蚀的实时纳米级观测
基本信息
- 批准号:1309509
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This project employs a novel in-situ transmission electron microscopy (TEM) method to study corrosion reactions at liquid-solid interfaces in real-time. Using a micro-fluidic chamber sealed between electron transparent membranes, nanoscale corrosion processes that occur at interfaces between water and pure aluminum or aluminum alloys are studied. The program focuses on the fundamental issue of pit initiation in passivating films. This in-situ method addresses a long standing problem of examining passive films in electron microscopes where vacuum is known to affect the structure and properties of the films by maintaining hydrated surfaces throughout the characterization of the passivation and corrosion processes. This in-situ technique allows the observation of the formation of passive films and also allows the introduction of pit inducing chloride solutions in real time. By synthesizing passivating films of varying crystallinity and thickness prior to initiating corrosion, differentiation between nucleation events dominated by the intrinsic surface structure and chemistry of the films, and those controlled by the structure and chemistry of the metal can be accomplished. Alloy films of Al-Li and Al-Cu, will also be studied to understand the interaction of the alloying elements with the growth and stability of the passivating films and the subsequent pitting reactions. While it is known at the micrometer scale that alloying elements affect pitting behavior, it is not known if that is due to electrochemical interactions at the nanometer level or if the elements are also incorporated into the passive films, thus affecting the intrinsic resistance of the films to localized breakdown. The in-situ TEM methods are supplemented by x-ray photoelectron spectroscopy and Auger electron spectroscopy, utilizing deposition and reaction chambers directly attached to the instruments.NON-TECHNICAL SUMMARY:The impact of corrosion upon the national infrastructure and upon manufactured goods is enormous (estimated at 5-10% of GNP), creating a substantial drain on the national economy and having major impacts upon infrastructure and transportation safety. A recent study published by the National Academies of Science and Engineering identified a number of important research areas that should be pursued to alleviate the drain of corrosion on the nation's resources. Among those areas identified is the problem of localized corrosion such as pitting, since its occurrence is often unpredictable. This project employs a novel in-situ transmission electron microscopy (TEM) method to study corrosion reactions at liquid-solid interfaces at the nano-scale in real-time. The fundamental knowledge derived under this research program may help to understand, and subsequently to mitigate, localized corrosion reactions. While this program primarily addresses passive film formation and local breakdown on aluminum and aluminum alloy films, the information obtained from the program will be applicable to the technological problem of localized corrosion in other metal and alloy systems. The advantage of an in-situ, real time examination method is that it allows the observation of nanometer-scale phenomena under environmental conditions typical of actual corrosion events. In addition to advancing scientific knowledge of an important corrosion phenomenon, this project contributes to the nation's intellectual base by educating graduate students at the Ph.D. level. In the aforementioned NAS/NAE study of the nation's needs in corrosion research, the absence of an adequate cadre of trained corrosion scientists was clearly identified. Another major aspect of the program is that it uses undergraduate laboratory researchers, exposing them to advanced research methods and the opportunity to be involved in the understanding and possible mitigation of an important technical problem.
技术概述:本项目采用一种新颖的原位透射电子显微镜(TEM)方法实时研究液固界面的腐蚀反应。利用密封在电子透明膜之间的微流体室,研究了发生在水与纯铝或铝合金界面的纳米级腐蚀过程。该计划的重点是在钝化膜坑起始的基本问题。这种原位方法解决了一个长期存在的问题,即在电子显微镜下检查钝化膜,在钝化和腐蚀过程中,真空通过保持表面水化来影响膜的结构和性能。这种原位技术可以观察钝化膜的形成,也可以实时引入诱导坑的氯化物溶液。通过在开始腐蚀之前合成不同结晶度和厚度的钝化膜,可以区分由膜的内在表面结构和化学性质主导的成核事件和由金属的结构和化学性质控制的成核事件。还将研究Al-Li和Al-Cu合金膜,以了解合金元素与钝化膜的生长和稳定性以及随后的点蚀反应的相互作用。虽然在微米尺度上已知合金元素会影响点蚀行为,但尚不清楚这是由于纳米水平上的电化学相互作用,还是由于这些元素也被纳入钝化膜中,从而影响了膜对局部击穿的固有电阻。原位透射电镜方法辅以x射线光电子能谱和俄歇电子能谱,利用直接连接在仪器上的沉积和反应室。非技术总结:腐蚀对国家基础设施和制成品的影响是巨大的(估计占国民生产总值的5-10%),对国民经济造成了巨大的消耗,对基础设施和运输安全产生了重大影响。美国国家科学院(National Academies of Science and Engineering)最近发表的一份研究报告确定了一些重要的研究领域,以减轻对国家资源的腐蚀流失。其中确定的问题是局部腐蚀,如点蚀,因为它的发生往往是不可预测的。本项目采用一种新颖的原位透射电子显微镜(TEM)方法,在纳米尺度上实时研究液固界面的腐蚀反应。从这个研究项目中获得的基础知识可能有助于理解并随后减轻局部腐蚀反应。虽然该计划主要解决铝和铝合金膜的被动膜形成和局部击穿问题,但从该计划中获得的信息将适用于其他金属和合金系统的局部腐蚀技术问题。现场实时检测方法的优点在于,它允许在实际腐蚀事件的典型环境条件下观察纳米尺度的现象。除了推进对一种重要腐蚀现象的科学认识外,该项目还通过培养博士级研究生,为国家的知识基础做出了贡献。在前面提到的NAS/NAE对国家腐蚀研究需求的研究中,我们清楚地认识到缺乏足够的训练有素的腐蚀科学家队伍。该计划的另一个主要方面是,它使用本科实验室研究人员,使他们接触先进的研究方法,并有机会参与理解和可能减轻一个重要的技术问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Duquette其他文献
David Duquette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Duquette', 18)}}的其他基金
CAREER: Interface Deformation and Compatibility in Shape Memory Polycrystals
职业:形状记忆多晶的界面变形和兼容性
- 批准号:
1352524 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Laser Photoionization Studies of Excited Atomic States
激发原子态的激光光电离研究
- 批准号:
9109164 - 财政年份:1991
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Hydrogen Embrittlement on Nickel Under Monotonic and Cyclic Loading
单调和循环加载下镍的氢脆
- 批准号:
8009241 - 财政年份:1980
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Equipment Grant: Closed-Loop Electrohydraulic Fatigue Testing System and Environmental Chamber
设备资助:闭环电液疲劳测试系统和环境室
- 批准号:
7727681 - 财政年份:1978
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PhD: Real-time nanoscale imaging in live cells - High Speed Single Molecule Localisation Microscopy
博士:活细胞中的实时纳米级成像 - 高速单分子定位显微镜
- 批准号:
2116111 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Studentship
Real-time and real-space simulation of photoinduced functionality in nanoscale molecular solids
纳米级分子固体中光诱导功能的实时和真实空间模拟
- 批准号:
18K05022 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IOS EDGE: Nanoscale Probes and Infrastructure for Real-Time and Single-Cell Genomics across Metazoa
IOS EDGE:用于后生动物实时和单细胞基因组学的纳米级探针和基础设施
- 批准号:
1645219 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Systems for real time growth, functionalization and analysis of nanoscale and quantum materials and surfaces
用于纳米级和量子材料及表面的实时生长、功能化和分析的系统
- 批准号:
RTI-2016-00577 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Research Tools and Instruments
GOALI: Real Time, Nanoscale Imaging of Electrochemistry and Electroplating in Liquid Media
GOALI:液体介质中电化学和电镀的实时纳米级成像
- 批准号:
1129722 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Real-time nanoscale analysis of immune evasion molecules from Streptococcus pyogenes using bio-imaging technologies
使用生物成像技术对化脓性链球菌的免疫逃避分子进行实时纳米级分析
- 批准号:
21689048 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Real-time investigation of surface plasmon plariton propagation in nanoscale plasmonic phase structures
纳米级等离子体相结构中表面等离子体激元传播的实时研究
- 批准号:
138733244 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Priority Programmes
Real-Time Electron Dynamics in Nanoscale Structures
纳米结构中的实时电子动力学
- 批准号:
0454842 - 财政年份:2004
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Real-Time Electron Dynamics in Nanoscale Structures
纳米结构中的实时电子动力学
- 批准号:
0242907 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Real-Time Nanoscale Investigation of Soft Matter Defects (A01)
软物质缺陷的实时纳米级研究(A01)
- 批准号:
524512990 - 财政年份:
- 资助金额:
$ 39万 - 项目类别:
Collaborative Research Centres














{{item.name}}会员




