Mean curvature flow, minimal surfaces and Ricci flow
平均曲率流、最小曲面和里奇流
基本信息
- 批准号:1311795
- 负责人:
- 金额:$ 15.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The three topics in the title of the project enjoy strong connections and analogies between them, which for some aspects are also directly useful in a rigorous setting. Thus, a large portion of the proposed project concerns the further extension of gluing techniques for solutions of the nonlinear partial differential equations of minimal surfaces and constant mean curvature surfaces, to study important existence and uniqueness questions for singularities and long time behavior of the two curvature flows. Such transplantation of techniques has already proven successful, also in the previous work of the P.I.Firstly, in the project the P.I. will, in collaboration with Prof. Nicos Kapouleas (at Brown University) and Dr. Stephen J. Kleene (at MIT), continue their joint work on gluing constructions for minimal surfaces and mean curvature flow singularities for surfaces in 3-manifolds, and applications to solitons in the curvature flows. Secondly, the PI will, in collaboration with Dr. Höskuldur P. Halldorsson, establish existence results for new types of long time solutions under mean curvature flow in Euclidean space. Thirdly, the P.I. will, alone or in collaboration with others, study time-dependent gluing constructions in mean curvature flow, and explore an analogous problem for 3-dimensional Ricci flow, which will further help guiding the on-going study of properties of this flow by many other researchers. Fourth, alone or in collaboration with others, initiate the study of gluing constructions for other nonlinear geometric PDEs. For example in relation to conformal geometry, complex geometry and constraints on Ricci curvature.Minimizing the area of an interface between two regions is a fundamental problem which arises in many scientific and engineering applications. Mean curvature flow, being defined as the fastest way to locally decrease the area of a given surface, is formulated as a partial differential equation, very similar in nature to that which governs the flow of heat in a material. While key foundational results are known, many of the basic questions remain unanswered. Already, many very striking applications, lauded by experts across the sciences, have in recent years followed from the study of these particular flows. Many more are expected to arise both within and outside of mathematics, such as in astronomy, to black holes and the large-scale structure of the universe, and in chemistry, to complex molecules. The proposal involves research problems at varying levels, and so there is rich opportunity and concrete plans to include as well undergraduate students as graduate students, postdoctoral and faculty researchers across institutions in the project. Given the manifest geometric and physically motivated nature of the material, the ideas and results of the project are also very suitable for an inspiring communication, visually and otherwise, to a broad audience.
项目标题中的三个主题之间有很强的联系和类比,在某些方面,这在严格的环境中也是直接有用的。因此,很大一部分的建议项目涉及进一步扩展的胶合技术的解决方案的非线性偏微分方程的最小曲面和常平均曲率曲面,研究重要的存在性和唯一性问题的奇异性和长时间的行为的两个曲率流。这种技术的移植已经被证明是成功的,在P.I.以前的工作中也是如此。将与Nicos Kapouleas教授(布朗大学)和Stephen J. Kleene博士(麻省理工学院)合作,继续他们在最小曲面和3流形中曲面的平均曲率流奇点的胶合构造以及曲率流中孤子的应用方面的联合工作。其次,PI将与Höskuldur P. Halldorsson博士合作,建立欧氏空间中平均曲率流下新型长时间解的存在性结果。第三,P.I.将单独或与他人合作研究平均曲率流中的时间相关胶合结构,并探索三维Ricci流的类似问题,这将有助于进一步指导许多其他研究人员正在进行的这种流的性质的研究。第四,单独或与他人合作,开展其他非线性几何偏微分方程胶合构造的研究。例如,在保形几何、复几何和Ricci曲率的约束中,最小化两个区域之间的界面面积是许多科学和工程应用中出现的一个基本问题。平均曲率流被定义为局部减小给定表面面积的最快方式,被公式化为偏微分方程,其性质与控制材料中的热流的性质非常相似。虽然关键的基础结果是已知的,但许多基本问题仍然没有答案。近年来,对这些特殊流动的研究已经产生了许多非常引人注目的应用,这些应用受到了科学界专家的称赞。在数学的内部和外部,预计还会有更多的问题出现,例如在天文学中,黑洞和宇宙的大尺度结构,以及在化学中,复杂分子。该提案涉及不同层次的研究问题,因此有丰富的机会和具体的计划,包括本科生以及研究生,博士后和跨机构的研究人员在项目中。鉴于材料明显的几何和物理动机性质,该项目的想法和结果也非常适合在视觉上和其他方面与广大观众进行鼓舞人心的交流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fernando Marques其他文献
Submarine landslide hazard in the Sines Contourite Drift, SW Iberia: slope instability analysis under static and transient conditions
伊比利亚西南部 Sines Contourite Drift 的海底滑坡灾害:静态和瞬态条件下的斜坡失稳分析
- DOI:
10.1007/s11069-023-06340-z - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
M. Teixeira;Cristina Roque;R. Omira;Fernando Marques;Davide Gamboa;P. Terrinha;G. Ercilla;M. Yenes;A. Mena;David Casas - 通讯作者:
David Casas
# 73. Implicações clínicas de episódios traumáticos em dentição temporária: série de casos
- DOI:
10.1016/j.rpemd.2014.11.183 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:
- 作者:
Ana Luisa Costa;João Carlos Ramos;Alexandra Vinagre;Maria Teresa Xavier;Fernando Marques - 通讯作者:
Fernando Marques
Characterization and rehabilitation of the “Porta Férrea” stone materials, University of Coimbra, Portugal
- DOI:
10.1007/s12665-018-7587-z - 发表时间:
2018-06-05 - 期刊:
- 影响因子:2.800
- 作者:
Lídia Catarino;Francisco P. S. C. Gil;Mário Quinta-Ferreira;Fernando Marques - 通讯作者:
Fernando Marques
I-28. Adesão à dentina humana obtida por diferentes sistemas adesivos: estudo in vitro
- DOI:
10.1016/j.rpemd.2013.12.029 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
Sandra Seabra Campos;João Carlos Ramos;Alexandra Vinagre;Fernando Marques;Ana Chambino - 通讯作者:
Ana Chambino
Active surface faulting or landsliding in the Lower Tagus Valley (Portugal)? A solved controversy concerning the Vila Chã de Ourique site
- DOI:
10.1007/s10950-010-9221-8 - 发表时间:
2010-12-14 - 期刊:
- 影响因子:2.000
- 作者:
João Manuel Cabral;Fernando Marques;Paula Figueiredo;Luís Matias - 通讯作者:
Luís Matias
Fernando Marques的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fernando Marques', 18)}}的其他基金
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
- 批准号:
2105557 - 财政年份:2021
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
- 批准号:
1811840 - 财政年份:2018
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Geometry, analysis and variational methods
几何、分析和变分方法
- 批准号:
1509027 - 财政年份:2015
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Partial regularity and rigidity problems associated to geometric elliptic systems
与几何椭圆系统相关的部分正则性和刚性问题
- 批准号:
1104592 - 财政年份:2011
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
相似国自然基金
离散分析-分形和图上的分析及其应用
- 批准号:11271011
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
共形几何与液晶问题中的偏微分方程
- 批准号:11201223
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
University Undergraduate Student Research Awards
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2105576 - 财政年份:2021
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2146997 - 财政年份:2021
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant