Geometry, Analysis, and Variational Methods

几何、分析和变分方法

基本信息

  • 批准号:
    2105557
  • 负责人:
  • 金额:
    $ 44.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project will investigate questions related to the variational theory of minimal surfaces and its applications. Minimal surfaces, of which soap bubbles are an illustrative example, are among the most natural objects in differential geometry. They have applications in many areas, such as three-dimensional topology, mathematical physics, complex and conformal geometry, and materials science. In general relativity, minimal surfaces appear as models for the apparent horizons of black holes. The minimal surface equation plays a very important role as a model for several kinds of nonlinear phenomena. Minimal surfaces have also been recently used in the design of materials with applications in biology and in chemistry. The project also includes training of PhD students and junior researchers. The PI will also disseminate his work through lectures, conferences, and workshops.This project will advance our basic understanding of minimal surfaces and their general existence theory. It concerns foundational questions about when these objects exist and how their properties relate to features of the ambient. The aim is to investigate the Morse-theoretic properties of the space of minimal varieties in a given Riemannian manifold. The idea is to use a combination of min-max methods, with the Almgren-Pitts min-max theory, and topological methods with the existence of homotopically nontrivial families of varieties. PI will study several questions related to this theme, including constructions of minimal hypersurfaces in higher dimensions and in the noncompact case. The project also includes plans for continued training of PhD students and post-doctoral researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目将研究与极小曲面变分理论及其应用有关的问题。极小曲面是微分几何中最自然的物体之一,肥皂泡就是其中的一个例证。它们在许多领域都有应用,如三维拓扑学、数学物理、复杂和保角几何以及材料科学。在广义相对论中,极小表面表现为黑洞视界的模型。极小曲面方程作为几种非线性现象的模型起着非常重要的作用。最近,极小表面也被用于材料的设计,在生物学和化学中有应用。该项目还包括博士生和初级研究人员的培训。PI还将通过讲座、会议和研讨会来传播他的工作。这个项目将促进我们对极小曲面及其一般存在理论的基本理解。它涉及有关这些对象何时存在以及它们的属性如何与环境特征相关的基本问题。目的是研究给定黎曼流形中极小变差空间的Morse理论性质。其思想是结合使用极小极大方法与Almgren-Pitts极小极大理论,以及存在同伦非平凡变异族的拓扑方法。PI将研究与这一主题相关的几个问题,包括高维极小超曲面的构造和非紧情况下的极小超曲面的构造。该项目还包括继续培训博士生和博士后研究人员的计划。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fernando Marques其他文献

Submarine landslide hazard in the Sines Contourite Drift, SW Iberia: slope instability analysis under static and transient conditions
伊比利亚西南部 Sines Contourite Drift 的海底滑坡灾害:静态和瞬态条件下的斜坡失稳分析
  • DOI:
    10.1007/s11069-023-06340-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Teixeira;Cristina Roque;R. Omira;Fernando Marques;Davide Gamboa;P. Terrinha;G. Ercilla;M. Yenes;A. Mena;David Casas
  • 通讯作者:
    David Casas
# 73. Implicações clínicas de episódios traumáticos em dentição temporária: série de casos
  • DOI:
    10.1016/j.rpemd.2014.11.183
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ana Luisa Costa;João Carlos Ramos;Alexandra Vinagre;Maria Teresa Xavier;Fernando Marques
  • 通讯作者:
    Fernando Marques
Characterization and rehabilitation of the “Porta Férrea” stone materials, University of Coimbra, Portugal
  • DOI:
    10.1007/s12665-018-7587-z
  • 发表时间:
    2018-06-05
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Lídia Catarino;Francisco P. S. C. Gil;Mário Quinta-Ferreira;Fernando Marques
  • 通讯作者:
    Fernando Marques
I-28. Adesão à dentina humana obtida por diferentes sistemas adesivos: estudo in vitro
  • DOI:
    10.1016/j.rpemd.2013.12.029
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sandra Seabra Campos;João Carlos Ramos;Alexandra Vinagre;Fernando Marques;Ana Chambino
  • 通讯作者:
    Ana Chambino
Active surface faulting or landsliding in the Lower Tagus Valley (Portugal)? A solved controversy concerning the Vila Chã de Ourique site
  • DOI:
    10.1007/s10950-010-9221-8
  • 发表时间:
    2010-12-14
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    João Manuel Cabral;Fernando Marques;Paula Figueiredo;Luís Matias
  • 通讯作者:
    Luís Matias

Fernando Marques的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fernando Marques', 18)}}的其他基金

Geometry, Analysis, and Variational Methods
几何、分析和变分方法
  • 批准号:
    1811840
  • 财政年份:
    2018
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
Geometry, analysis and variational methods
几何、分析和变分方法
  • 批准号:
    1509027
  • 财政年份:
    2015
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
Mean curvature flow, minimal surfaces and Ricci flow
平均曲率流、最小曲面和里奇流
  • 批准号:
    1311795
  • 财政年份:
    2013
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
Partial regularity and rigidity problems associated to geometric elliptic systems
与几何椭圆系统相关的部分正则性和刚性问题
  • 批准号:
    1104592
  • 财政年份:
    2011
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
  • 批准号:
    2350161
  • 财政年份:
    2023
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
Hippocampal shape analysis using graph convolutional variational autoencoders
使用图卷积变分自动编码器进行海马形状分析
  • 批准号:
    572580-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.88万
  • 项目类别:
    University Undergraduate Student Research Awards
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
  • 批准号:
    RGPIN-2017-04035
  • 财政年份:
    2022
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
  • 批准号:
    2145225
  • 财政年份:
    2022
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Continuing Grant
Variational Analysis: Theory, Algorithms, and Applications
变分分析:理论、算法和应用
  • 批准号:
    2204519
  • 财政年份:
    2022
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Standard Grant
Variational structures, convergence to equilibrium and multiscale analysis for non-Markovian systems
非马尔可夫系统的变分结构、均衡收敛和多尺度分析
  • 批准号:
    EP/V038516/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Research Grant
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
  • 批准号:
    21H04431
  • 财政年份:
    2021
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
  • 批准号:
    21K18583
  • 财政年份:
    2021
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
  • 批准号:
    RGPIN-2017-04035
  • 财政年份:
    2021
  • 资助金额:
    $ 44.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了