Computional Analysis of Inverse problems

反问题的计算分析

基本信息

项目摘要

This grant supports an international conference on "Computational Analysis of Inverse Problem," to be held in May 16-18, 2013 at the University of Central Florida (UCF) in Orlando, Florida. The theme of the conference is on computation and analysis of inverse problems. Inverse problems have wide range of applications in medical imaging, remote sensing, tomography and nondestructive testing, machine learning, geophysics and statistical inference. In the past 20 years, there have been major advances in inverse problems and its foundational aspects, where methods of functional analysis, partial differential equations and applied harmonic analysis have played pivotal roles in guiding the computational methods. The aim of the conference is to bring together top international experts to facilitate collaboration and communication among researchers under the common theme of inverse problems. There will be 20 invited speakers from USA, Europe and Asia Pacific, 15 of them from USA. Funds from NSF shall provide support for graduate students and recent PhDs and cover partial expenses of some domestic senior researchers.Inverse problems have wide range of applications including medical and other imaging techniques, location of oil and other mineral deposits underneath the earth's surface through remote sensing, creation of astrophysical images from telescope. In addition to the traditional application in medical imaging, which plays a big role in improving national health care, the theory and computational methods developed to study inverse problems have demonstrated a big impact on energy independence through more effective drilling of oil and natural gas. They also help us to deep our understanding of climate change through creation of astrophysical images. The conference will serve the purpose of encouraging communication and collaboration between researchers not only in different scientific disciplines and industries, but also across international boundaries. The conference is expected to attract many young researchers and graduate students to participate in conference activities, in particular women and other under-represented minorities. The participation of graduate students and young researchers from USA and other countries will give arise to a good opportunity for mentoring activities for these groups.
该补助金支持将于2013年5月16日至18日在佛罗里达奥兰多的中央佛罗里达大学(UCF)举行的“反问题的计算分析”国际会议。会议的主题是反问题的计算和分析。逆问题在医学成像、遥感、层析成像与无损检测、机器学习、物理学和统计推断等领域有着广泛的应用。在过去的20年里,反问题及其基础方面取得了重大进展,其中泛函分析,偏微分方程和应用调和分析方法在指导计算方法方面发挥了关键作用。会议的目的是汇集国际顶尖专家,促进研究人员在反问题的共同主题下的合作和交流。将有来自美国,欧洲和亚太地区的20位特邀演讲者,其中15位来自美国。美国国家科学基金会将资助研究生和近期博士生的研究,并支付部分国内高级研究人员的费用。反问题有着广泛的应用,包括医学和其他成像技术,通过遥感定位地球表面下的石油和其他矿藏,从望远镜创建天体物理图像。除了在医学成像中的传统应用外,这在改善国民医疗保健方面发挥了重要作用,为研究逆问题而开发的理论和计算方法已经证明,通过更有效地钻探石油和天然气,对能源独立产生了重大影响。它们还通过创建天体物理图像帮助我们加深对气候变化的理解。该会议旨在鼓励研究人员之间的交流与合作,不仅在不同的科学学科和行业,而且跨越国际边界。预计会议将吸引许多年轻研究人员和研究生参加会议活动,特别是妇女和其他代表人数不足的少数群体。来自美国和其他国家的研究生和年轻研究人员的参与将为这些群体提供一个良好的指导活动机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanwei Qi其他文献

Convergence of solutions of the weighted Allen–Cahn equations to Brakke type flow
加权 Allen–Cahn 方程解收敛于 Brakke 型流
A micromanipulation system for single nanostructure material deposition using resistance
利用电阻沉积单一纳米结构材料的微操作系统
  • DOI:
    10.1080/10584587.2016.1177425
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Ke Xu;Yuanwei Qi;Zhi;Li Wang;W. Gong;Xiyang Liu;Hongwei Li;Xing Wang;Yongming Mao
  • 通讯作者:
    Yongming Mao
CRITICAL EXPONENTS OF DEGENERATE PARABOLIC EQUATIONS
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanwei Qi
  • 通讯作者:
    Yuanwei Qi
Existence of TravelingWaves of General Gray-Scott Models
一般格雷-斯科特模型行波的存在性
  • DOI:
    10.1007/s10884-017-9603-5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhi Zheng;Xinfu Chen;Yuanwei Qi;Shulin Zhou
  • 通讯作者:
    Shulin Zhou
Noncovalent interaction network of chalcogen, halogen and hydrogen bonds for supramolecular β-sheet organization
用于超分子β-折叠组织的硫属元素、卤素和氢键的非共价相互作用网络
  • DOI:
    10.1039/d3cc05539f
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Jinlian Cao;Peimin Weng;Yuanwei Qi;Kexin Lin;Xiaosheng Yan
  • 通讯作者:
    Xiaosheng Yan

Yuanwei Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanwei Qi', 18)}}的其他基金

Frontiers of Mathematical Biology: Modeling, Computation and Analysis
数学生物学前沿:建模、计算和分析
  • 批准号:
    1806830
  • 财政年份:
    2018
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
  • 批准号:
    2220373
  • 财政年份:
    2023
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Standard Grant
Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Synergistic Inverse Wave Analysis and Computation
职业:协同逆波分析和计算
  • 批准号:
    2237534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Continuing Grant
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
  • 批准号:
    2907952
  • 财政年份:
    2023
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Studentship
ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
  • 批准号:
    2301535
  • 财政年份:
    2023
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Standard Grant
Development of high-precision estimation method of uncertainty in Bayesian structure inverse analysis
贝叶斯结构逆分析中不确定性高精度估计方法的研制
  • 批准号:
    22H01579
  • 财政年份:
    2022
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
  • 批准号:
    2154480
  • 财政年份:
    2022
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Standard Grant
Inverse analysis of explosions in complex urban environments.
复杂城市环境中爆炸的逆分析。
  • 批准号:
    2786653
  • 财政年份:
    2022
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Studentship
Non-destructive evaluation of 3D plastic strain and residual stress distributions induced by earthquakes using non-linear inverse analysis
使用非线性反演分析对地震引起的 3D 塑性应变和残余应力分布进行无损评估
  • 批准号:
    22K03831
  • 财政年份:
    2022
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vocal Fold Inverse Analysis
声带逆分析
  • 批准号:
    547447-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了