An Eulerian finite element method for partial differential equations posed on surfaces
曲面上偏微分方程的欧拉有限元方法
基本信息
- 批准号:1315993
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research project is the development and analysis of a new Eulerian finite element method for solving elliptic and parabolic partial differential equations defined on hypersurfaces. The method uses traces of volume finite element space functions on a surface to discretize equations posed on that surface. This project aims at extending the method, its analysis and applications in several directions: (i) The extension and the analysis of the method for the case of an evolving surface; This is done in the framework of space-time finite element methods; (ii) The development of a higher order surface finite element method; This involves the analysis of the properties of traces of higher order finite element spaces on hypersurfaces; (iii) An error analysis for a class of coupled bulk domain - surface problems, discretized with volume and surface finite element methods; This includes numerical analysis and experiments for the problem of equilibrium two-phase incompressible viscous flow with surface active agents (surfactants).Partial differential equations posed on surfaces arise in mathematical models for many natural phenomena: diffusion along grain boundaries, lipid interactions in biomembranes, pattern formation, and transport of surfactants on multiphase flow interfaces to mention a few. Numerical simulations play an important role in a better understanding and prediction of processes involving these or other surface phenomena. Although, the study of numerical methods for equations on surfaces is a rapidly growing research area, computational technique for evolving and implicitly defined surfaces is largely in its infant stage. Numerical methods developed in the project are based on the Eulerian description of the motion of continuous medium. This choice of the Eulerian instead of the Lagrangian description is fundamental. It leads to serious algorithmic and analysis challenges, but it is consistent with most of approaches in computational mechanics and so enables an integration of the method in many existing software packages for scientific computing. One example of a specific application the project aims is the transport of surface active agents on the interface in two-phase incompressible flow problems. In this application, the surface (interface between two different fluids, such as water and oil) evolves driven by a bulk fluid flow. To account for variable surface tension phenomena, such as Marangoni forces, one has to solve transport-diffusion equations for surfactant concentration on the evolving surface. Reliable computational tools for simulation processes on fluidic interfaces are crucial for a rigorous understanding of the behaviour of such very complex two-phase flow problems.
本研究项目的目标是开发和分析一种新的欧拉有限元方法,用于求解超曲面上定义的椭圆型和抛物型偏微分方程。该方法利用体积有限元空间函数在某一曲面上的轨迹,对该曲面上的方程进行离散化。本项目旨在将该方法及其分析和应用扩展到以下几个方面:(i)将该方法扩展和分析到一个不断变化的表面;这是在时空有限元方法的框架下完成的;(二)发展高阶曲面有限元法;这涉及到超曲面上高阶有限元空间轨迹的性质分析;(iii)用体积和表面有限元方法离散的一类体域-表面耦合问题的误差分析;这包括数值分析和实验问题的平衡两相不可压缩粘流与表面活性剂(表面活性剂)。表面上的偏微分方程出现在许多自然现象的数学模型中:沿晶界扩散,生物膜中的脂质相互作用,模式形成,多相流界面上表面活性剂的运输等等。数值模拟在更好地理解和预测涉及这些或其他表面现象的过程中起着重要作用。虽然曲面方程的数值方法研究是一个快速发展的研究领域,但演化曲面和隐式曲面的计算技术在很大程度上还处于起步阶段。该项目开发的数值方法是基于连续介质运动的欧拉描述。选择欧拉描述而不是拉格朗日描述是基本的。它带来了严重的算法和分析挑战,但它与计算力学中的大多数方法一致,因此可以将该方法集成到许多现有的科学计算软件包中。该项目具体应用的一个例子是两相不可压缩流动问题中表面活性剂在界面上的传输。在这种应用中,表面(两种不同流体之间的界面,如水和油)在大量流体流动的驱动下演变。为了解释变化的表面张力现象,如马兰戈尼力,人们必须求解表面活性剂浓度在演化表面上的输运-扩散方程。可靠的流体界面模拟过程的计算工具对于严格理解这种非常复杂的两相流问题的行为至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Olshanskiy其他文献
Maxim Olshanskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Olshanskiy', 18)}}的其他基金
Numerical Analysis and Methods for Fluid Deformable Surfaces and Their Interaction with the Bulk
流体变形表面及其与本体相互作用的数值分析和方法
- 批准号:
2011444 - 财政年份:2020
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Unfitted Finite Element Methods for Partial Differential Equations on Evolving Surfaces and Coupled Surface-Bulk Problems
演化曲面偏微分方程和耦合面体问题的不拟合有限元方法
- 批准号:
1717516 - 财政年份:2017
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Collaborative Research: Variational Structure Preserving Methods for Incompressible Flows: Discretization, Analysis, and Parallel Solvers
合作研究:不可压缩流的变分结构保持方法:离散化、分析和并行求解器
- 批准号:
1522252 - 财政年份:2015
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
相似国自然基金
Whitham调制理论在色散方程间断初值问题中的应用
- 批准号:12001556
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
- 批准号:
2883532 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Quantifying the relationship between intracortical remodeling, microdamage, and bone quality in a novel in vivo loading model
在新型体内负荷模型中量化皮质内重塑、微损伤和骨质量之间的关系
- 批准号:
478357 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Operating Grants
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
- 批准号:
10643122 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别: