Unfitted Finite Element Methods for Partial Differential Equations on Evolving Surfaces and Coupled Surface-Bulk Problems
演化曲面偏微分方程和耦合面体问题的不拟合有限元方法
基本信息
- 批准号:1717516
- 负责人:
- 金额:$ 15.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important processes in nature and in engineering applications take place along surfaces. Examples include interaction of lipid and protein molecules in cell membranes or the action of a chemical dispersant on the oil-water interface, while helping to clean-up an oil spill. These and other processes are described mathematically with the help of differential equations posed on surfaces. Numerical methods for solving these equations provide tools for scientists to understand better surface phenomena by doing in silico experiments. The present project aims to develop such accurate and reliable numerical methods for the benefit of academic and engineering community.This research project develops new higher order unfitted finite element methods for partial differential equations (PDEs) posed on evolving surfaces. The developed numerical approach uses time-independent background meshes. In a weak formulation of a PDE, the method employs traces of standard finite element spaces on reconstructed evolving physical domains. The resulting methods will be optimally accurate, handle implicitly defined surfaces, allow a surface to undergo topological changes, and extend to surface-bulk coupled problems. The project goals will be met by constructing a higher order space-time unfitted finite element method and performing a full convergence analysis, extending the method and analysis to coupled surface-bulk transport-diffusion problems, developing a new hybrid method for PDEs on evolving surfaces that uses finite difference approximations of time derivatives, extending the new approach to fluid equations posed on manifolds.
自然界和工程应用中的许多重要过程都是沿着表面进行的。例如,细胞膜中脂质和蛋白质分子的相互作用,或化学分散剂在油水界面上的作用,同时帮助清理溢油。这些过程和其他过程都是借助曲面上的微分方程进行数学描述的。求解这些方程的数值方法为科学家们通过进行硅实验来更好地理解表面现象提供了工具。本项目旨在发展这种准确可靠的数值方法,以供学术界和工程界使用。本研究计划发展一种新的高阶非拟合有限元方法来求解演化曲面上的偏微分方程(PDEs)。所开发的数值方法使用与时间无关的背景网格。在PDE的弱公式中,该方法在重构的演化物理域上使用标准有限元空间的轨迹。由此产生的方法将达到最佳精度,处理隐式定义的表面,允许表面经历拓扑变化,并扩展到表面-体耦合问题。为了实现项目目标,将构建高阶时空非拟合有限元方法并进行全收敛分析,将该方法和分析扩展到耦合的表面-体输运-扩散问题,开发一种新的混合方法来求解演化表面上的偏微分方程,使用时间导数的有限差分近似,将新方法扩展到流形流体方程。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A TRACE FINITE ELEMENT METHOD FOR VECTOR-LAPLACIANS ON SURFACES
- DOI:10.1137/17m1146038
- 发表时间:2018-01-01
- 期刊:
- 影响因子:2.9
- 作者:Gross, Sven;Jankuhn, Thomas;Reusken, Arnold
- 通讯作者:Reusken, Arnold
A TRACE FINITE ELEMENT METHOD FOR PDES ON EVOLVING SURFACES
- DOI:10.1137/16m1099388
- 发表时间:2017-01-01
- 期刊:
- 影响因子:3.1
- 作者:Olshanskii, Maxim A.;Xu, Xianmin
- 通讯作者:Xu, Xianmin
A FINITE ELEMENT METHOD FOR THE SURFACE STOKES PROBLEM
- DOI:10.1137/18m1166183
- 发表时间:2018-01-01
- 期刊:
- 影响因子:3.1
- 作者:Olshanskii, Maxim A.;Quaini, Annalisa;Yushutin, Vladimir
- 通讯作者:Yushutin, Vladimir
A computational study of lateral phase separation in biological membranes
- DOI:10.1002/cnm.3181
- 发表时间:2018-08
- 期刊:
- 影响因子:2.1
- 作者:V. Yushutin;A. Quaini;Sheereen Majd;M. Olshanskii
- 通讯作者:V. Yushutin;A. Quaini;Sheereen Majd;M. Olshanskii
Inf-sup stability of the trace $P_2-P_1$ Taylor-Hood elements for surface PDEs
表面偏微分方程 $P_2-P_1$ 泰勒-胡德单元的 Inf-sup 稳定性
- DOI:10.1090/mcom/3551
- 发表时间:2020
- 期刊:
- 影响因子:2
- 作者:Olshanskii, Maxim A.;Reusken, Arnold;Zhiliakov, Alex
- 通讯作者:Zhiliakov, Alex
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Olshanskiy其他文献
Maxim Olshanskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Olshanskiy', 18)}}的其他基金
Numerical Analysis and Methods for Fluid Deformable Surfaces and Their Interaction with the Bulk
流体变形表面及其与本体相互作用的数值分析和方法
- 批准号:
2011444 - 财政年份:2020
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
Collaborative Research: Variational Structure Preserving Methods for Incompressible Flows: Discretization, Analysis, and Parallel Solvers
合作研究:不可压缩流的变分结构保持方法:离散化、分析和并行求解器
- 批准号:
1522252 - 财政年份:2015
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
An Eulerian finite element method for partial differential equations posed on surfaces
曲面上偏微分方程的欧拉有限元方法
- 批准号:
1315993 - 财政年份:2013
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
- 批准号:
2883532 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
- 批准号:
23K08691 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)