Collaborative Research: Variational Structure Preserving Methods for Incompressible Flows: Discretization, Analysis, and Parallel Solvers
合作研究:不可压缩流的变分结构保持方法:离散化、分析和并行求解器
基本信息
- 批准号:1522252
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop improved models and numerical methods that advance the state of the art for incompressible fluid flow simulation. The key ideas are the better enforcement of geometric and physical laws in the computer algorithms, building a solid mathematical framework for the models and methods developed, and the devising of algorithms that will allow for efficient implementation on supercomputers. Although the simulation of fluid flow is a critical subtask in a wide spectrum of engineering applications, current tools and techniques are often unreliable and it is not uncommon for state of the art methods to take weeks or months (or possibly never finish with an accurate solution), even with thousands of processors, to perform simulations of flows around a car, through a nuclear reactor, or around part of an airplane. The project aims to develop mathematical prediction models and numerical methods that will provide more accurate solutions in a more efficient manner than state-of-the-art methods.The PIs will construct efficient methods for incompressible flow simulation by constructing models and methods that better adhere to geometric structure and physical conservation laws than modern methods. The key components are to i) construct novel methods that are efficient and can correctly account for vorticity dynamics, and energy, helicity, and mass conservation -- this will require development of efficient boundary conditions and significant analysis to build a solid mathematical framework; ii) develop more efficient algebraic solvers for these methods that can be used on thousands of processors; iii) large scale testing on benchmark problems as well as on application problems with collaborators. Broader impacts include i) developing efficient methods for simulating high speed incompressible flows, which will improve the design process for a wide spectrum of applications in environmental engineering, in cardiovascular simulations, and in atmosphere and ocean sciences; ii) training graduate and undergraduate students through research involvement; and iii) developing large scale, parallel codes to be made publicly available as part of the deal.II library.
该项目的目标是开发改进的模型和数值方法,推进不可压缩流体流动模拟的最新技术。关键思想是在计算机算法中更好地执行几何和物理定律,为所开发的模型和方法建立坚实的数学框架,以及设计允许在超级计算机上有效实施的算法。虽然流体流动的模拟是广泛的工程应用中的关键子任务,但当前的工具和技术通常是不可靠的,并且对于最先进的方法来说,即使使用数千个处理器,也需要花费数周或数月(或可能永远无法完成精确的解决方案)来执行汽车周围,通过核反应堆或飞机部件周围的流动模拟。该项目旨在开发数学预测模型和数值方法,以比最先进的方法更有效的方式提供更准确的解决方案。PI将通过构建比现代方法更好地遵循几何结构和物理守恒定律的模型和方法,构建不可压缩流模拟的有效方法。关键组成部分是i)构建高效且能够正确解释涡度动力学、能量、螺旋度和质量守恒的新型方法--这将需要开发高效的边界条件和重要的分析来构建坚实的数学框架; ii)为这些方法开发更有效的代数求解器,可在数千个处理器上使用; iii)与合作者一起对基准问题以及应用问题进行大规模测试。更广泛的影响包括:i)开发模拟高速不可压缩流的有效方法,这将改善环境工程,心血管模拟以及大气和海洋科学中广泛应用的设计过程; ii)通过参与研究培训研究生和本科生;以及iii)开发大规模并行代码,作为交易II库的一部分公开提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Olshanskiy其他文献
Maxim Olshanskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Olshanskiy', 18)}}的其他基金
Numerical Analysis and Methods for Fluid Deformable Surfaces and Their Interaction with the Bulk
流体变形表面及其与本体相互作用的数值分析和方法
- 批准号:
2011444 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Unfitted Finite Element Methods for Partial Differential Equations on Evolving Surfaces and Coupled Surface-Bulk Problems
演化曲面偏微分方程和耦合面体问题的不拟合有限元方法
- 批准号:
1717516 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
An Eulerian finite element method for partial differential equations posed on surfaces
曲面上偏微分方程的欧拉有限元方法
- 批准号:
1315993 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210717 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210689 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106534 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106988 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Variational Inference Approach to Computer Model Calibration, Uncertainty Quantification, Scalability, and Robustness
合作研究:计算机模型校准、不确定性量化、可扩展性和鲁棒性的变分推理方法
- 批准号:
1952856 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A Unified Framework of Distributional Optimization via Variational Transport
合作研究:CIF:小型:通过变分传输的分布式优化的统一框架
- 批准号:
2008827 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2038030 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Variational Inference Approach to Computer Model Calibration, Uncertainty Quantification, Scalability, and Robustness
合作研究:计算机模型校准、不确定性量化、可扩展性和鲁棒性的变分推理方法
- 批准号:
1952897 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant