Numerical Analysis and Methods for Fluid Deformable Surfaces and Their Interaction with the Bulk
流体变形表面及其与本体相互作用的数值分析和方法
基本信息
- 批准号:2011444
- 负责人:
- 金额:$ 20.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid surfaces that deform are ubiquitous in cell and tissue biology as well as in modeling of emulsions and foams. Computer modeling plays an increasingly important role in better understanding of processes involving such surfaces as well as interfacial phenomena. The present project aims to develop accurate and reliable numerical methods for the simulation of fluidic deformable surfaces and their interaction with the bulk. Development of such methods will facilitate understanding the functionality of lipid bilayers, the actin cortex, epithelial cell sheets, and the properties of other thin structures exhibiting in-plane viscosity and lateral mobility. The project provides research training for a graduate student.The project will consider models of fluids on surfaces. For these, continuum-based modeling leads to systems of partial differential equations posed on time-dependent manifolds. For example, lipid membranes are fluidic thin layers that can be modeled as two-dimensional viscous surface fluids with bending elasticity. The project will develop and analyze a geometrically unfitted finite element method for fluid systems posed on deformable surfaces such as surface Stokes and surface Navier-Stokes equations, tangential fluid equations coupled with in-plane elasticity and equations governing out-of-plane (geometrical) motions, as well as interface-bulk coupled fluid systems. The project focus is on splitting schemes for the resulting coupled systems. The methods build on formulation of governing equations in terms of tangential differential calculus and employ time-independent unfitted background meshes. The approach will allow for implicitly given complex shapes that may undergo topological transitions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
变形的流体表面在细胞和组织生物学以及乳液和泡沫的建模中是普遍存在的。 计算机建模在更好地理解涉及这些表面以及界面现象的过程中起着越来越重要的作用。本项目的目的是开发精确和可靠的数值方法,用于模拟流体可变形表面及其与主体的相互作用。这种方法的发展将有助于理解脂质双层,肌动蛋白皮质,上皮细胞片的功能,以及其他薄结构表现出面内粘度和横向流动性的特性。该项目为一名研究生提供研究训练。该项目将考虑表面上的流体模型。对于这些,基于连续性的建模导致在时间依赖流形上提出的偏微分方程系统。例如,脂质膜是流体薄层,其可以被建模为具有弯曲弹性的二维粘性表面流体。该项目将为可变形表面上的流体系统开发和分析几何非拟合有限元方法,如表面斯托克斯和表面纳维尔-斯托克斯方程、与平面内弹性耦合的切向流体方程和控制平面外(几何)运动的方程,以及界面-体积耦合流体系统。该项目的重点是分裂计划产生的耦合系统。该方法建立在制定的控制方程的切向微分,并采用时间无关的不适合的背景网格。该方法将允许隐含给定的复杂形状,可能会经历拓扑transitions.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpolatory tensorial reduced order models for parametric dynamical systems
参数动力系统的插值张量降阶模型
- DOI:10.1016/j.cma.2022.115122
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Mamonov, Alexander V.;Olshanskii, Maxim A.
- 通讯作者:Olshanskii, Maxim A.
A Comparison of Cahn–Hilliard and Navier–Stokes–Cahn–Hilliard Models on Manifolds
Cahn-Hilliard 和 Navier-Stokes-Cahn-Hilliard 流形模型的比较
- DOI:10.1007/s10013-022-00564-5
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Olshanskii, Maxim;Palzhanov, Yerbol;Quaini, Annalisa
- 通讯作者:Quaini, Annalisa
An Unfitted Finite Element Method for Two-Phase Stokes Problems with Slip Between Phases
- DOI:10.1007/s10915-021-01658-x
- 发表时间:2021-01
- 期刊:
- 影响因子:2.5
- 作者:M. Olshanskii;A. Quaini;Qi Sun
- 通讯作者:M. Olshanskii;A. Quaini;Qi Sun
A Finite Element Method for Two-Phase Flow with Material Viscous Interface
- DOI:10.1515/cmam-2021-0185
- 发表时间:2021-06
- 期刊:
- 影响因子:1.3
- 作者:M. Olshanskii;A. Quaini;Qi Sun
- 通讯作者:M. Olshanskii;A. Quaini;Qi Sun
On equilibrium states of fluid membranes
论流体膜的平衡状态
- DOI:10.1063/5.0152423
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Olshanskii, Maxim A.
- 通讯作者:Olshanskii, Maxim A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Olshanskiy其他文献
Maxim Olshanskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Olshanskiy', 18)}}的其他基金
Unfitted Finite Element Methods for Partial Differential Equations on Evolving Surfaces and Coupled Surface-Bulk Problems
演化曲面偏微分方程和耦合面体问题的不拟合有限元方法
- 批准号:
1717516 - 财政年份:2017
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Collaborative Research: Variational Structure Preserving Methods for Incompressible Flows: Discretization, Analysis, and Parallel Solvers
合作研究:不可压缩流的变分结构保持方法:离散化、分析和并行求解器
- 批准号:
1522252 - 财政年份:2015
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
An Eulerian finite element method for partial differential equations posed on surfaces
曲面上偏微分方程的欧拉有限元方法
- 批准号:
1315993 - 财政年份:2013
- 资助金额:
$ 20.08万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
- 批准号:
2240180 - 财政年份:2023
- 资助金额:
$ 20.08万 - 项目类别:
Continuing Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325196 - 财政年份:2023
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Numerical Methods in Noncommutative Matrix Analysis
非交换矩阵分析中的数值方法
- 批准号:
2110398 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
- 批准号:
21H03452 - 财政年份:2021
- 资助金额:
$ 20.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis and Numerical Methods for Peridynamics and Nonlocal Models
近场动力学和非局部模型的数学分析和数值方法
- 批准号:
2044945 - 财政年份:2020
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
- 批准号:
20K14659 - 财政年份:2020
- 资助金额:
$ 20.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
- 批准号:
2009736 - 财政年份:2020
- 资助金额:
$ 20.08万 - 项目类别:
Standard Grant