Algorithms and Computation for Rare Events in Complex Systems

复杂系统中罕见事件的算法和计算

基本信息

  • 批准号:
    1318586
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The project is concerned with mathematical and computational issues related to the simulation and analysis of equilibria, metastable and transition states and minimum energy paths for complex energy landscapes of practical interests, and associated stochastic dynamics. The research to be carried out is closely motivated by applications in a number of areas of federal strategic interests: the development of effective algorithms and codes is a crucial part of high-performance computing, and numerical methods and software tools to be developed may be potentially useful for effective computational materials and drug design. The principal investigator will carry out interdisciplinary research that encompassing subjects like computational mathematics, physics, information, materials and biological sciences. He will focus on new algorithmic development and analysis which have the potential to significantly improve the usual practice on the modeling and simulation of rare events. He will consider some specific and important applications, including systems of interacting particles and interfaces in geometrically confined and frustrated configurations or deformable geometry which arise in many areas of physics, chemistry and biology (such as formation of nano-clusters, bimolecular conformation, vesicle mediated interactions, and critical nucleation in solid state transformations). He will attempt to draw strong connections with some of the algorithms developed by practitioners implemented in existing software codes such as those for first principle calculation and computational chemistry. Most of the problems involved in the research project are associated with either infinite dimensional spaces such as deterministic or stochastic partial differential equations or finite dimensional spaces with high dimensions (discretization of differential equations or particle systems involving a large number of particles), which lead to many computational challenges. Various mathematical and numerical issues will be studied, ranging from efficient local saddle point search and its robust numerical implementation to rigorous analysis and effective multiscale simulations of relevant dynamics and rare events. It is expected that the progress made during the project will have a broad impact on the community interested in the study of rare events. The project will also contribute to education and training as it will provide students valuable training ground and research experience in an interdisciplinary environment. Much effort will be devoted to promoting active engagement of student participation at all levels and integrating research findings into teaching and training.
该项目关注与平衡,亚稳态和过渡态的模拟和分析相关的数学和计算问题,以及实际利益的复杂能源景观的最小能量路径,以及相关的随机动力学。要进行的研究是密切的动机,在一些领域的应用程序的联邦战略利益:有效的算法和代码的发展是高性能计算的一个重要组成部分,和数值方法和软件工具的开发可能是潜在的有用的有效的计算材料和药物设计。首席研究员将开展跨学科研究,包括计算数学,物理,信息,材料和生物科学等学科。他将专注于新的算法开发和分析,这些算法有可能显着改善罕见事件建模和模拟的常规实践。他将考虑一些具体的和重要的应用,包括相互作用的粒子和界面的几何限制和挫折配置或变形的几何形状,出现在物理,化学和生物学的许多领域(如纳米簇的形成,双分子构象,囊泡介导的相互作用,和临界成核固态转换)的系统。他将试图与从业者在现有软件代码中开发的一些算法建立强有力的联系,例如第一原理计算和计算化学。 研究项目中涉及的大多数问题都与无限维空间(如确定性或随机偏微分方程)或高维有限维空间(微分方程的离散化或涉及大量粒子的粒子系统)相关,这导致了许多计算挑战。将研究各种数学和数值问题,从有效的局部鞍点搜索及其强大的数值实现,到相关动态和罕见事件的严格分析和有效的多尺度模拟。预计该项目期间取得的进展将对有兴趣研究罕见事件的社区产生广泛影响。该项目还将有助于教育和培训,因为它将为学生提供跨学科环境中的宝贵培训场所和研究经验。将大力促进各级学生的积极参与,并将研究结果纳入教学和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Du其他文献

Design of N-Terminal Derivatives from a Novel Dermaseptin Exhibiting Broad-Spectrum Antimicrobial Activity against Isolates from Cystic Fibrosis Patients
新型 Dermaseptin 的 N 末端衍生物的设计,对囊性纤维化患者的分离物表现出广谱抗菌活性
  • DOI:
    10.3390/biom9110646
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Yuan Ying;Hui Wang;Xinping Xi;Chengbang Ma;Yue Liu;Mei Zhou;Qiang Du;James F. Burrows;MinjieWei;Tianbao Chen;Lei Wang
  • 通讯作者:
    Lei Wang
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method
嵌件成型Ti-6Al-4V/Al7050接头的界面组织与力学性能
An energy-stable scheme for a 2D simple fluid-particle interaction problem
二维简单流体-粒子相互作用问题的能量稳定方案
  • DOI:
    10.1016/j.jcp.2020.109850
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xiang Li;Qiang Du;Li Luo;Xiao-Ping Wang
  • 通讯作者:
    Xiao-Ping Wang
An Improved Back-projection Algorithm for Magnetic Induction Tomography Image Reconstruction
一种改进的磁感应断层扫描图像重建反投影算法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Ke(柯丽);Xiao Lin;Qiang Du
  • 通讯作者:
    Qiang Du
Constraint-Free Adaptive FEMs on Quadrilateral Nonconforming Meshes
四边形非相容网格上的无约束自适应有限元法
  • DOI:
    10.1007/s10915-013-9753-5
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xuying Zhao;Zhong-Ci Shi;Qiang Du
  • 通讯作者:
    Qiang Du

Qiang Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Du', 18)}}的其他基金

Algorithmic and analytical development for solving and learning nonlocal models
用于求解和学习非局部模型的算法和分析开发
  • 批准号:
    2309245
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
  • 批准号:
    2012562
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Numerical Analysis of Smoothed Particle Hydrodynamics Type Methods via Nonlocal Models
基于非局部模型的平滑粒子流体动力学类型方法的数值分析
  • 批准号:
    1719699
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
  • 批准号:
    1558744
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
  • 批准号:
    1016073
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computation of Some Model Problems in Interface and Defect Dynamics
界面与缺陷动力学中若干模型问题的分析、算法与计算
  • 批准号:
    0712744
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computations for Model Problems in Physical Sciences
物理科学模型问题的分析、算法和计算
  • 批准号:
    0409297
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
  • 批准号:
    0196522
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
  • 批准号:
    0104891
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis, Algorithms, and Computations for Models of High-Temperature Superconductivity
数学科学:高温超导模型的分析、算法和计算
  • 批准号:
    9796208
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
  • 批准号:
    2400056
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
  • 批准号:
    2339193
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036867/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了