Algorithmic and analytical development for solving and learning nonlocal models
用于求解和学习非局部模型的算法和分析开发
基本信息
- 批准号:2309245
- 负责人:
- 金额:$ 39.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nonlocal interactions have become increasingly prominent in natural systems, which has led to the growing interest in nonlocal modeling. The study of nonlocal models has attracted much attention from applied and computational mathematicians, motivated by applications in disciplines like mechanics, materials science, life science, data science, and social science. This project aims to study an important class of nonlocal models involving nonlocal interactions of a finite range. In a variety of real world applications, these models can serve as an alternative or complement to traditional PDE-based models and help connect PDE models with discrete models. The project is consistent with our vision of informative and intelligent scientific computing, which will broadly contribute to the advance of computation science and various scientific and engineering research fields, particularly as the world becomes increasingly connected (and nonlocal). The investigator will continue to build a close working relationship with research scientists at different institutions to facilitate the collaborative research effort and to strengthen the training and mentoring of young students and junior researchers. Effort will be made to ensure the timely translation and integration of new research findings into enhanced modeling and simulation capabilities for applications. Training at least one graduate student on the topics of the proposed research is expected.Nonlocal models differ from the more common local models represented by partial differential equations (PDEs) in that they employ nonlocal operators in integral forms, which can account for nonlocal interactions explicitly and provide more general modeling choices. Despite much progress, the mathematical theory and numerical analysis of nonlocal models are still at a nascent stage. Many key questions remain unanswered in all aspects of nonlocal modeling, analysis, and computation. In this project, the investigator aims to advance the mathematical and algorithmic development of nonlocal models with a finite range of interactions through an integrated solution and learning process. On one hand, the investigator will focus on a few key questions related to the formulation, discretization, and learning of nonlocal models, particularly involving physical boundaries or interfaces. This is represented by some specific tasks concerning the analytical and algorithmic development for solving nonlocal problems with inhomogeneous data at or near the boundary and/or with heterogeneous nonlocal interactions. These problems are notoriously challenging and their satisfactory solutions will have a significant impact on applications. Meanwhile, the project will help us build integrated modeling and learning processes. New strategies and algorithms will be developed to help bring potentially transformative changes to how nonlocal models are formulated and learned and to the related numerical methods, including their development, analysis, and application. By drawing close connections to local PDEs, fractional, and discrete graph models, the project will also shed light on the mathematical and computational studies of many other related subjectsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非局部相互作用在自然系统中变得越来越突出,这导致了人们对非局部建模的兴趣日益浓厚。非局部模型在力学、材料科学、生命科学、数据科学和社会科学等学科中的应用,引起了应用数学家和计算数学家的广泛关注。本项目旨在研究一类重要的非局部模型,涉及有限范围的非局部相互作用。在各种现实世界的应用程序中,这些模型可以作为传统的基于PDE的模型的替代或补充,并帮助将PDE模型与离散模型连接起来。该项目与我们对信息和智能科学计算的愿景是一致的,这将广泛地促进计算科学和各种科学和工程研究领域的进步,特别是在世界日益联系(和非本地)的情况下。研究员将继续与不同研究机构的科学家建立密切的工作关系,以促进合作研究工作,并加强对年轻学生和初级研究人员的培训和指导。将努力确保将新的研究成果及时转化和整合到增强的应用建模和仿真能力中。培训至少一名研究生的主题提出的研究是预期的。非局部模型不同于由偏微分方程(PDEs)表示的更常见的局部模型,因为它们采用积分形式的非局部算子,可以显式地解释非局部相互作用并提供更一般的建模选择。非局部模型的数学理论和数值分析虽然取得了很大的进展,但仍处于起步阶段。在非局部建模、分析和计算的各个方面,许多关键问题仍未得到解答。在这个项目中,研究者旨在通过一个集成的解决方案和学习过程来推进具有有限范围相互作用的非局部模型的数学和算法发展。一方面,研究者将关注与非局部模型的制定、离散化和学习相关的几个关键问题,特别是涉及物理边界或界面。这表现在一些具体的任务中,这些任务涉及解决边界或边界附近的非均匀数据和/或异构非局部相互作用的非局部问题的分析和算法开发。众所周知,这些问题具有挑战性,它们令人满意的解决方案将对应用程序产生重大影响。同时,该项目将帮助我们建立集成的建模和学习过程。将开发新的策略和算法,以帮助为非局部模型的制定和学习以及相关的数值方法带来潜在的变革,包括它们的开发,分析和应用。通过与本地偏微分方程、分数和离散图模型的密切联系,该项目还将揭示许多其他相关学科的数学和计算研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Du其他文献
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method
嵌件成型Ti-6Al-4V/Al7050接头的界面组织与力学性能
- DOI:
10.1007/s12613-017-1430-5 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hong-xiang Li;Xin-yu Nie;Zhan-bing He;Kang-ning Zhao;Qiang Du;Ji-shan Zhang;Lin-zhong Zhuang - 通讯作者:
Lin-zhong Zhuang
An Improved Back-projection Algorithm for Magnetic Induction Tomography Image Reconstruction
一种改进的磁感应断层扫描图像重建反投影算法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Li Ke(柯丽);Xiao Lin;Qiang Du - 通讯作者:
Qiang Du
An energy-stable scheme for a 2D simple fluid-particle interaction problem
二维简单流体-粒子相互作用问题的能量稳定方案
- DOI:
10.1016/j.jcp.2020.109850 - 发表时间:
2021-01 - 期刊:
- 影响因子:4.1
- 作者:
Xiang Li;Qiang Du;Li Luo;Xiao-Ping Wang - 通讯作者:
Xiao-Ping Wang
Design of N-Terminal Derivatives from a Novel Dermaseptin Exhibiting Broad-Spectrum Antimicrobial Activity against Isolates from Cystic Fibrosis Patients
新型 Dermaseptin 的 N 末端衍生物的设计,对囊性纤维化患者的分离物表现出广谱抗菌活性
- DOI:
10.3390/biom9110646 - 发表时间:
2019-10 - 期刊:
- 影响因子:5.5
- 作者:
Yuan Ying;Hui Wang;Xinping Xi;Chengbang Ma;Yue Liu;Mei Zhou;Qiang Du;James F. Burrows;MinjieWei;Tianbao Chen;Lei Wang - 通讯作者:
Lei Wang
Constraint-Free Adaptive FEMs on Quadrilateral Nonconforming Meshes
四边形非相容网格上的无约束自适应有限元法
- DOI:
10.1007/s10915-013-9753-5 - 发表时间:
2013-08 - 期刊:
- 影响因子:2.5
- 作者:
Xuying Zhao;Zhong-Ci Shi;Qiang Du - 通讯作者:
Qiang Du
Qiang Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Du', 18)}}的其他基金
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
- 批准号:
2012562 - 财政年份:2020
- 资助金额:
$ 39.48万 - 项目类别:
Continuing Grant
Numerical Analysis of Smoothed Particle Hydrodynamics Type Methods via Nonlocal Models
基于非局部模型的平滑粒子流体动力学类型方法的数值分析
- 批准号:
1719699 - 财政年份:2017
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
- 批准号:
1558744 - 财政年份:2015
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
- 批准号:
1318586 - 财政年份:2013
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
- 批准号:
1016073 - 财政年份:2010
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computation of Some Model Problems in Interface and Defect Dynamics
界面与缺陷动力学中若干模型问题的分析、算法与计算
- 批准号:
0712744 - 财政年份:2007
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computations for Model Problems in Physical Sciences
物理科学模型问题的分析、算法和计算
- 批准号:
0409297 - 财政年份:2004
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
- 批准号:
0104891 - 财政年份:2001
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
- 批准号:
0196522 - 财政年份:2001
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis, Algorithms, and Computations for Models of High-Temperature Superconductivity
数学科学:高温超导模型的分析、算法和计算
- 批准号:
9796208 - 财政年份:1997
- 资助金额:
$ 39.48万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
非集中式网络供应链的协调优化与应用研究
- 批准号:70871105
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Development of physiological index on the stress tolerance and the analytical method of distribution of riparian trees
河岸树木抗逆生理指标的建立及分布分析方法
- 批准号:
23K04040 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Novel single-cell mass spectrometry methods to assess the role of intracellular drug concentration and metabolism in antimicrobial treatment failure
评估细胞内药物浓度和代谢在抗菌治疗失败中的作用的新型单细胞质谱方法
- 批准号:
10714351 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
- 批准号:
10723861 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
XVIR-110 an ultra-long-acting INSTI for HIV pre-exposure prophylaxis in IND-enabling studies
XVIR-110 是一种超长效 INSTI,用于 IND 支持研究中的 HIV 暴露前预防
- 批准号:
10764186 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别: