Analysis, Algorithms and Computations for Model Problems in Physical Sciences
物理科学模型问题的分析、算法和计算
基本信息
- 批准号:0409297
- 负责人:
- 金额:$ 14.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project is concerned with the development,analysis and applications of numerical simulation toolsto a number of problems in computational sciences,in particular, in computational physics and computationalmaterial sciences. It is a continuation of PI's past research work in this area that has contributed to the modeling, analysis, and computation of various problems in superconductivity,Bose-Einstein condensation, and phase transitions in binary and multicomponent alloys. In the proposed work, while building upon the past progress,the PI will take on new initiatives in the study of some interesting physical problems at various time and spatial scalesand in the design of new algorithms and efficientsolvers which can then be used to understand experimental phenomenaand the underlying physical and material properties.The proposed works are to be carried out in the following aspects: to develop or refine mathematical models for the underlying physical problems, so to enlarge the range of validity of such models; to analyze these models in order to gain further understanding of their properties and of their solutions; to develop, analyze, andimplement algorithms, in particular, parallel and adaptive algorithms,for the numerical simulation of these models; and to use our algorithms and codes, together with physicists and material scientists, to study some interesting phenomena in physics and material sciences,including the further studies on the quantized vortices in superconductors and Bose-Einstein condensates, on the effects offluctuation and on the validity and the extension of mezoscopic phenomenological models. While we will focus on developing innovative mathematical theory and computational algorithms, comparisons with the physical experiments will also be made whenever possible.
该项目涉及数值模拟工具的开发、分析和应用,以解决计算科学中的一些问题,特别是计算物理学和计算材料科学。 它是PI过去在这一领域的研究工作的延续,有助于对超导性,玻色-爱因斯坦凝聚和二元及多组分合金相变中的各种问题进行建模,分析和计算。在这项工作中,PI将在过去的进展基础上,在不同时间和空间尺度上研究一些有趣的物理问题,并设计新的算法和有效的求解器,从而可以用来理解实验现象和潜在的物理和材料属性。拟议的工作将在以下几个方面进行:发展或改进基本物理问题的数学模型,以扩大这些模型的有效性范围;分析这些模型,以进一步了解它们的性质和解决方案;开发、分析和实现算法,特别是并行和自适应算法,用于这些模型的数值模拟;并利用我们的算法和程序,与物理学家和材料科学家一起,研究物理学和材料科学中的一些有趣现象,包括对超导体和玻色-爱因斯坦凝聚体中量子化涡旋的进一步研究,对涨落效应的研究,以及对介观唯象模型的有效性和扩展的研究。 虽然我们将专注于开发创新的数学理论和计算算法,但也将尽可能与物理实验进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Du其他文献
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method
嵌件成型Ti-6Al-4V/Al7050接头的界面组织与力学性能
- DOI:
10.1007/s12613-017-1430-5 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hong-xiang Li;Xin-yu Nie;Zhan-bing He;Kang-ning Zhao;Qiang Du;Ji-shan Zhang;Lin-zhong Zhuang - 通讯作者:
Lin-zhong Zhuang
An Improved Back-projection Algorithm for Magnetic Induction Tomography Image Reconstruction
一种改进的磁感应断层扫描图像重建反投影算法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Li Ke(柯丽);Xiao Lin;Qiang Du - 通讯作者:
Qiang Du
An energy-stable scheme for a 2D simple fluid-particle interaction problem
二维简单流体-粒子相互作用问题的能量稳定方案
- DOI:
10.1016/j.jcp.2020.109850 - 发表时间:
2021-01 - 期刊:
- 影响因子:4.1
- 作者:
Xiang Li;Qiang Du;Li Luo;Xiao-Ping Wang - 通讯作者:
Xiao-Ping Wang
Design of N-Terminal Derivatives from a Novel Dermaseptin Exhibiting Broad-Spectrum Antimicrobial Activity against Isolates from Cystic Fibrosis Patients
新型 Dermaseptin 的 N 末端衍生物的设计,对囊性纤维化患者的分离物表现出广谱抗菌活性
- DOI:
10.3390/biom9110646 - 发表时间:
2019-10 - 期刊:
- 影响因子:5.5
- 作者:
Yuan Ying;Hui Wang;Xinping Xi;Chengbang Ma;Yue Liu;Mei Zhou;Qiang Du;James F. Burrows;MinjieWei;Tianbao Chen;Lei Wang - 通讯作者:
Lei Wang
Constraint-Free Adaptive FEMs on Quadrilateral Nonconforming Meshes
四边形非相容网格上的无约束自适应有限元法
- DOI:
10.1007/s10915-013-9753-5 - 发表时间:
2013-08 - 期刊:
- 影响因子:2.5
- 作者:
Xuying Zhao;Zhong-Ci Shi;Qiang Du - 通讯作者:
Qiang Du
Qiang Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Du', 18)}}的其他基金
Algorithmic and analytical development for solving and learning nonlocal models
用于求解和学习非局部模型的算法和分析开发
- 批准号:
2309245 - 财政年份:2023
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
- 批准号:
2012562 - 财政年份:2020
- 资助金额:
$ 14.89万 - 项目类别:
Continuing Grant
Numerical Analysis of Smoothed Particle Hydrodynamics Type Methods via Nonlocal Models
基于非局部模型的平滑粒子流体动力学类型方法的数值分析
- 批准号:
1719699 - 财政年份:2017
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
- 批准号:
1558744 - 财政年份:2015
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
- 批准号:
1318586 - 财政年份:2013
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
- 批准号:
1016073 - 财政年份:2010
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computation of Some Model Problems in Interface and Defect Dynamics
界面与缺陷动力学中若干模型问题的分析、算法与计算
- 批准号:
0712744 - 财政年份:2007
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
- 批准号:
0104891 - 财政年份:2001
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
- 批准号:
0196522 - 财政年份:2001
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis, Algorithms, and Computations for Models of High-Temperature Superconductivity
数学科学:高温超导模型的分析、算法和计算
- 批准号:
9796208 - 财政年份:1997
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
相似海外基金
Smart Partitioning Based Large-Scale Power System Analysis on High-Performance Computing Platform: Modeling, Algorithms, and Computations
高性能计算平台上基于智能分区的大规模电力系统分析:建模、算法和计算
- 批准号:
1711449 - 财政年份:2017
- 资助金额:
$ 14.89万 - 项目类别:
Standard Grant
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
- 批准号:
238757-2013 - 财政年份:2017
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Uncertainty Quantification and Big Data Analysis in Interconnected Systems: Algorithms, Computations, and Applications
职业:互连系统中的不确定性量化和大数据分析:算法、计算和应用
- 批准号:
1555072 - 财政年份:2016
- 资助金额:
$ 14.89万 - 项目类别:
Continuing Grant
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
- 批准号:
238757-2013 - 财政年份:2015
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
- 批准号:
238757-2013 - 财政年份:2014
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
- 批准号:
238757-2013 - 财政年份:2013
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
- 批准号:
238757-2008 - 财政年份:2012
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
- 批准号:
238757-2008 - 财政年份:2011
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
- 批准号:
238757-2008 - 财政年份:2010
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
- 批准号:
364480-2008 - 财政年份:2010
- 资助金额:
$ 14.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements