Analysis, Algorithms and Computations for Model Problems in Material Sciences

材料科学模型问题的分析、算法和计算

基本信息

  • 批准号:
    0104891
  • 负责人:
  • 金额:
    $ 20.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2001-10-31
  • 项目状态:
    已结题

项目摘要

There has been an increasing trend to conduct scientific research using numerical simulations on modern high performance computers in recent years. Considerable progress has been made in the area of computational material sciences. Computational tools have been used in the design of new materials as well as in the study of their properties. The central objectives of this project are: 1) to develop or refine certain mesoscale and macroscale models, so to enlarge the range of physical problems for which such models are valid; 2) to analyze these models in order to gain further understanding of their properties and solutions; 3) to develop, analyze, and implement algorithms, in particular, parallel and adaptive algorithms, for the numerical simulation of these models; and 4) to use our algorithms and codes to study some interesting phenomena in material sciences.In the proposed work, the principal investigator will study models and develop numerical algorithms for some interesting material sciences problems that involve multiscale (mesoscale and macroscale) and stochastic effects, such as problems related to vortices and other defects in superconductivity and magnetism. A major part of the project is aimed at increasing the range of applications for the mesoscale codes and allow more comparative studies between the mesoscale and macroscopic models through the use of domain and scale decomposition/integration and adaptive computation techniques. The codes for mesoscale models can be of use in gaining information and insight about the physical behavior and interaction of the fine structures (such as vortices) with, for example, boundaries, interfaces, impurities, currents, and thermal fluctuations. They can be of indirect use to device designers, in particular, when connections with macroscopic properties can be identified. Models based on the stochastic partial differential equations and their numerical simulations will also be given emphasis, so as to gain insight to the macroscopic effect of thermal fluctuations and impurities in the materials like superconductors and liquid crystals. The work will be aimed at making the computational codes robust, efficient, flexible, accurate, scalable and user-friendly. It is hoped that these codes can be used by physicists, material scientists, and engineers in laboratories, universities, and industrial organizations as a tool for studying some specific material properties and also a tool in designing devices.
近年来,在现代高性能计算机上利用数值模拟进行科学研究的趋势越来越多。计算材料科学领域取得了相当大的进展。计算工具已被用于新材料的设计以及其性质的研究。该项目的中心目标是:1)发展或完善某些中尺度和宏观尺度模型,从而扩大这些模型适用的物理问题范围;2)对这些模型进行分析,以进一步了解其性质和解决方案;3)开发、分析和实现算法,特别是并行和自适应算法,用于这些模型的数值模拟;4)使用我们的算法和代码来研究材料科学中一些有趣的现象。在提议的工作中,首席研究员将研究模型并开发一些有趣的材料科学问题的数值算法,这些问题涉及多尺度(中尺度和宏观尺度)和随机效应,例如与超导和磁性中的涡旋和其他缺陷有关的问题。该项目的一个主要部分旨在通过使用域和尺度分解/积分和自适应计算技术,增加中尺度代码的应用范围,并允许在中尺度和宏观模式之间进行更多的比较研究。中尺度模型的代码可用于获取有关精细结构(如漩涡)的物理行为和相互作用的信息和见解,例如,边界、界面、杂质、电流和热波动。它们可以间接地用于器件设计者,特别是当可以确定与宏观特性的联系时。本文还将重点介绍基于随机偏微分方程的模型及其数值模拟,以便深入了解超导体、液晶等材料中热波动和杂质的宏观影响。这项工作将旨在使计算代码健壮、高效、灵活、准确、可扩展和用户友好。希望这些代码可以被实验室、大学和工业组织的物理学家、材料科学家和工程师用作研究某些特定材料特性的工具,也可以用作设计器件的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Du其他文献

Design of N-Terminal Derivatives from a Novel Dermaseptin Exhibiting Broad-Spectrum Antimicrobial Activity against Isolates from Cystic Fibrosis Patients
新型 Dermaseptin 的 N 末端衍生物的设计,对囊性纤维化患者的分离物表现出广谱抗菌活性
  • DOI:
    10.3390/biom9110646
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Yuan Ying;Hui Wang;Xinping Xi;Chengbang Ma;Yue Liu;Mei Zhou;Qiang Du;James F. Burrows;MinjieWei;Tianbao Chen;Lei Wang
  • 通讯作者:
    Lei Wang
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method
嵌件成型Ti-6Al-4V/Al7050接头的界面组织与力学性能
An energy-stable scheme for a 2D simple fluid-particle interaction problem
二维简单流体-粒子相互作用问题的能量稳定方案
  • DOI:
    10.1016/j.jcp.2020.109850
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xiang Li;Qiang Du;Li Luo;Xiao-Ping Wang
  • 通讯作者:
    Xiao-Ping Wang
An Improved Back-projection Algorithm for Magnetic Induction Tomography Image Reconstruction
一种改进的磁感应断层扫描图像重建反投影算法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Ke(柯丽);Xiao Lin;Qiang Du
  • 通讯作者:
    Qiang Du
Constraint-Free Adaptive FEMs on Quadrilateral Nonconforming Meshes
四边形非相容网格上的无约束自适应有限元法
  • DOI:
    10.1007/s10915-013-9753-5
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xuying Zhao;Zhong-Ci Shi;Qiang Du
  • 通讯作者:
    Qiang Du

Qiang Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Du', 18)}}的其他基金

Algorithmic and analytical development for solving and learning nonlocal models
用于求解和学习非局部模型的算法和分析开发
  • 批准号:
    2309245
  • 财政年份:
    2023
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
  • 批准号:
    2012562
  • 财政年份:
    2020
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Continuing Grant
Numerical Analysis of Smoothed Particle Hydrodynamics Type Methods via Nonlocal Models
基于非局部模型的平滑粒子流体动力学类型方法的数值分析
  • 批准号:
    1719699
  • 财政年份:
    2017
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
  • 批准号:
    1558744
  • 财政年份:
    2015
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Algorithms and Computation for Rare Events in Complex Systems
复杂系统中罕见事件的算法和计算
  • 批准号:
    1318586
  • 财政年份:
    2013
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
  • 批准号:
    1016073
  • 财政年份:
    2010
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computation of Some Model Problems in Interface and Defect Dynamics
界面与缺陷动力学中若干模型问题的分析、算法与计算
  • 批准号:
    0712744
  • 财政年份:
    2007
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computations for Model Problems in Physical Sciences
物理科学模型问题的分析、算法和计算
  • 批准号:
    0409297
  • 财政年份:
    2004
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Analysis, Algorithms and Computations for Model Problems in Material Sciences
材料科学模型问题的分析、算法和计算
  • 批准号:
    0196522
  • 财政年份:
    2001
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis, Algorithms, and Computations for Models of High-Temperature Superconductivity
数学科学:高温超导模型的分析、算法和计算
  • 批准号:
    9796208
  • 财政年份:
    1997
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant

相似海外基金

Smart Partitioning Based Large-Scale Power System Analysis on High-Performance Computing Platform: Modeling, Algorithms, and Computations
高性能计算平台上基于智能分区的大规模电力系统分析:建模、算法和计算
  • 批准号:
    1711449
  • 财政年份:
    2017
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Standard Grant
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Uncertainty Quantification and Big Data Analysis in Interconnected Systems: Algorithms, Computations, and Applications
职业:互连系统中的不确定性量化和大数据分析:算法、计算和应用
  • 批准号:
    1555072
  • 财政年份:
    2016
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Continuing Grant
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Computations in finite fields and probabilistic analysis of algorithms
有限域计算和算法的概率分析
  • 批准号:
    238757-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    238757-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical analysis of algorithms, and computations in finite fields
算法的数学分析和有限域中的计算
  • 批准号:
    364480-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 20.38万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了