Randomized Models for Nonlinear Optimization: Theoretical Foundations and Practical Numerical Methods
非线性优化的随机模型:理论基础和实用数值方法
基本信息
- 批准号:1319356
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves the design, analysis, and implementation of numerical algorithms for the mathematical optimization of large-scale, complex systems. In particular, the novel feature of the proposed algorithms is the use of random sampling of objective function information in the context of solving deterministic (i.e., non-random) problems. Despite the success of randomization in, e.g., stochastic gradient techniques for machine learning, it has yet to be used actively in other settings as it has been deemed too expensive in sequential computing environments. However, with parallel computing becoming increasingly common, and with new advancements and convergence theory for randomized algorithms, these methods have great promise. The research in this project will focus on the use of ``accurate'' randomized models, broadening of convergence theory, and implementation of effective software. The novelty of the approach lies in achieving a middle ground between deterministic models that have to be accurate at each algorithmic step, and stochastic models that are accurate only in expectation, by exploiting random models that need to be accurate only with sufficiently high probability. The proposed strategies will balance per-iteration cost of the optimization routine with convergence speed while utilizing parallel computation. The priority in the project on developing practical, general-purpose numerical methods based on theoretically sound methodologies solidifies the merits of the proposed work.This project focuses on the development of novel numerical algorithms, and their analysis, for solving problems in two related realms of engineering design. In the first, the aim is to minimize a quantity---e.g., cost, energy, or the discrepancy between expected and observed data---that can only be determined via a computer simulation. These "black-box" optimization problems arise in important areas such as molecular geometry optimization, circuit design, and groundwater modeling. The second area represents those applications in which a given design needs to be robust under various input conditions, which includes problems in, e.g., medical image registration and the optimization of control systems. The project promises to advance the study of algorithms for solving all of these types of problems via the common thread of exploiting randomization and parallel computation.The impact of this work will clearly be cross-disciplinary, and will benefit users of optimization methods and software in academia, governmental research laboratories, and private industry. It will also promote the use of rigorous, classical algorithms in combination with randomized models for solving cutting-edge scientific problems.Finally, the educational plan will expose undergraduate and graduate students to modern efforts and challenges in computational mathematics, improve the educational opportunities for students interested in scientific research, and encourage faculty interaction in area schools.
该项目涉及大型复杂系统数学优化的数值算法的设计、分析和实现。 特别地,所提出的算法的新颖特征是在求解确定性(即,非随机)问题。 尽管随机化成功,例如,虽然随机梯度技术用于机器学习,但它尚未在其他设置中积极使用,因为它在顺序计算环境中被认为过于昂贵。 然而,随着并行计算变得越来越普遍,以及随机算法的新进展和收敛理论,这些方法有很大的希望。 本项目的研究将侧重于使用“准确”的随机模型,扩大收敛理论,并实施有效的软件。 该方法的新奇在于,通过利用仅需要以足够高的概率准确的随机模型,在每个算法步骤都必须准确的确定性模型和仅在预期中准确的随机模型之间实现中间地带。所提出的策略将平衡每次迭代的优化例程的成本与收敛速度,同时利用并行计算。 本项目的重点是在理论上合理的方法基础上开发实用的通用数值方法,这巩固了拟议工作的优点。本项目的重点是开发新的数值算法,并对其进行分析,以解决工程设计两个相关领域的问题。 在第一种情况下,目标是使数量最小化,例如,成本、能源或预期数据和观测数据之间的差异-这些只能通过计算机模拟来确定。这些“黑箱”优化问题出现在分子几何优化,电路设计和地下水建模等重要领域。 第二个领域代表那些应用,其中给定的设计需要在各种输入条件下具有鲁棒性,这包括以下方面的问题,例如,医学图像配准和控制系统的优化。 该项目承诺通过利用随机化和并行计算的共同思路来推进解决所有这些类型问题的算法研究。这项工作的影响显然是跨学科的,将使学术界、政府研究实验室和私营企业的优化方法和软件用户受益。 最后,教育计划将使本科生和研究生接触到计算数学的现代成果和挑战,改善对科学研究感兴趣的学生的教育机会,并鼓励地区学校的教师互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katya Scheinberg其他文献
Novel and Efficient Approximations for Zero-One and Ranking Losses of Linear Classifiers
- DOI:
10.1007/s10013-025-00767-6 - 发表时间:
2025-07-21 - 期刊:
- 影响因子:0.700
- 作者:
Hiva Ghanbari;Minhan Li;Katya Scheinberg - 通讯作者:
Katya Scheinberg
Efficient block-coordinate descent algorithms for the Group Lasso
- DOI:
10.1007/s12532-013-0051-x - 发表时间:
2013-03-31 - 期刊:
- 影响因子:3.600
- 作者:
Zhiwei Qin;Katya Scheinberg;Donald Goldfarb - 通讯作者:
Donald Goldfarb
OPTIMA Mathematical Programming Society Newsletter 79
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Katya Scheinberg - 通讯作者:
Katya Scheinberg
Katya Scheinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katya Scheinberg', 18)}}的其他基金
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Adaptive Optimization of Stochastic and Noisy Function
合作研究:AF:小:随机和噪声函数的自适应优化
- 批准号:
2008434 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
LEAPS-MPS: Controllable sets for nonlinear switched models with applications to infectious diseases
LEAPS-MPS:非线性切换模型的可控集及其在传染病中的应用
- 批准号:
2315862 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325170 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Research on the behavior of solutions to nonlinear Schrodinger equations of non-conserved models
非守恒模型非线性薛定谔方程解的行为研究
- 批准号:
23K03168 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Wave Models in Domains with a Boundary
有边界域中的非线性波模型
- 批准号:
2206270 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
- 批准号:
RGPIN-2022-05067 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
- 批准号:
RGPIN-2021-04311 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual