SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
基本信息
- 批准号:1319448
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large number of "big data" and "big simulation" applications, such as those for determining network models or simulations of partial differential equation models, concern high dimensional data that are sparse. Sparse data structures and algorithms present significant advantages in terms of storage and computational costs. However, with only a few operations per data element, efficient and scalable implementations are difficult to achieve on current and emerging high performance computing systems with very high degrees of core level parallelism, complex node interconnect topology and multicore/manycore nodes with non-uniform memory architectures (NUMA). This proposal develops and evaluates á-embedded graph hardware-software models and attendant data locality-preserving and NUMA-aware application to core/thread mappings to enhance performance and parallel scalability. Consider an application task graph A, weighted with measures of work and data sharing that is approximately embedded in two or three dimensions, to obtain an á-embedded graph A. Additionally, consider a weighted graph of a HPC system that is naturally assigned coordinates to obtain an á-embedded host graph model H. This proposal develops parallel algorithms to compute interconnect topology-aware mappings of A to H in order to optimize performance measures such as congestion and dilation while preserving load balance. Additionally, at a multicore node in H that is assigned a subgraph of A, (i) sparse data are reordered to enhance parallelism and locality, and (ii) a dynamic fine-grain NUMA-aware task scheduling is applied to respond through work-stealing to core variations in performance from resource conflicts, throttling etc. Finally, through insights gained from á-embedded graph models, sparse matrix algorithms are reformulated to enhance communication avoidance, soft error resilience and data preconditioning. Outcomes include enabling weak scaling to a very large number of cores by extracting parallelism at fine, medium and large-grains, and significantly enhanced fixed and scaled problem efficiencies through locality preservation. The interconnect topology-aware models and maps hold the potential for impact on very large scale HPC workloads through potential incorporation into the Message Passing Interface for enhanced sparse communications. Additionally, the proposed locality-aware mappings and NUMA-aware scheduling can potentially benefit the very large base of modeling and simulation applications that run on small multicore clusters. Graduate student training is enhanced through a "scale-up" challenge component in an interdisciplinary course on computational science and engineering. High school students are introduced to parallel computing through summer in-residence programs seeking to broaden participation in science and engineering from underrepresented communities.
大量的“大数据”和“大模拟”应用,例如用于确定网络模型或偏微分方程模型的模拟的应用,涉及稀疏的高维数据。稀疏数据结构和算法在存储和计算成本方面具有显著优势。然而,由于每个数据元素只有很少的操作,在当前和新兴的高性能计算系统上很难实现高效和可扩展的实现,这些计算系统具有非常高的核心级并行性、复杂的节点互连拓扑和具有非统一存储结构的多核/多核节点(NUMA)。该方案开发和评估嵌入式图形硬件-软件模型以及随之而来的数据局部性保护和NUMA感知的应用程序到核心/线程的映射,以提高性能和并行可伸缩性。考虑一个应用任务图A,加权了大约嵌入在二维或三维中的工作和数据共享的度量,以获得α嵌入的图A。此外,考虑自然分配坐标以获得α嵌入的主机图模型H的HPC系统的加权图。该建议开发并行算法来计算互连拓扑感知A到H的映射,以便在保持负载平衡的同时优化诸如拥塞和扩张的性能度量。此外,在被分配了A的子图的H中的多核节点,(I)稀疏数据被重新排序以增强并行性和局部性,以及(Ii)动态细粒度NUMA感知任务调度被应用以通过窃取工作来响应资源冲突、节流等导致的核心性能变化。最后,通过从嵌入图模型中获得的见解,重新制定稀疏矩阵算法以增强通信避免、软错误恢复和数据预处理。结果包括通过在细、中和大颗粒上提取并行性,使弱伸缩能够扩展到非常大量的核心,并通过位置保留显著提高固定和规模化问题的效率。互连拓扑感知模型和映射通过潜在地整合到消息传递接口以增强稀疏通信,可能会对超大规模HPC工作负载产生影响。此外,建议的位置感知映射和NUMA感知调度可能会使运行在小型多核集群上的非常大的建模和模拟应用程序基础受益。研究生培训通过计算科学和工程跨学科课程中的“扩大规模”挑战部分得到加强。高中生通过暑期入驻项目向他们介绍并行计算,这些项目旨在扩大代表不足的社区对科学和工程的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Padma Raghavan其他文献
Multi-resource scheduling of moldable workflows
可成型工作流程的多资源调度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. Perotin;Sandhya Kandaswamy;Hongyang Sun;Padma Raghavan - 通讯作者:
Padma Raghavan
Padma Raghavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Padma Raghavan', 18)}}的其他基金
NSF I-Corps Hub (Track 1): Mid-South Region
NSF I-Corps 中心(轨道 1):中南部地区
- 批准号:
2229521 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Cooperative Agreement
Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale
合作研究:SHF:小型:大规模学习容错
- 批准号:
2135309 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
- 批准号:
1719674 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
DC: Small: Adaptive Sparse Data Mining On Multicores
DC:小型:多核上的自适应稀疏数据挖掘
- 批准号:
1017882 - 财政年份:2010
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Toward a Linear Time Sparse Solver with Locality-Enhanced Scalable Parallelism
具有局部增强的可扩展并行性的线性时间稀疏求解器
- 批准号:
0830679 - 财政年份:2008
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
MRI: Acquistion of A Scalable Instrument for Discovery through Computing
MRI:获取可扩展的仪器,通过计算进行发现
- 批准号:
0821527 - 财政年份:2008
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CSR-SMA: Toward Model-Driven Multilevel Analysis and Optimization of Multicomponent Computer Systems
CSR-SMA:迈向模型驱动的多组件计算机系统的多级分析和优化
- 批准号:
0720749 - 财政年份:2007
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Adaptive Software for Extreme-Scale Scientific Computing: Co-Managing Quality-Performance-Power Tradeoffs
用于超大规模科学计算的自适应软件:共同管理质量-性能-功耗权衡
- 批准号:
0444345 - 财政年份:2004
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Grant to Support Activities at the Eleventh SIAM Conference on Parallel Processing for Scientific Computing
资助支持第十一届 SIAM 科学计算并行处理会议的活动
- 批准号:
0340869 - 财政年份:2003
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Robust Limited Memory Hybrid Sparse Solvers
鲁棒的有限内存混合稀疏求解器
- 批准号:
0102537 - 财政年份:2001
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似国自然基金
小胶质细胞通过FABP5/LXR/SREBP1轴介导的吞噬功能障碍加剧阿尔茨海默病Aβ病理的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复制蛋白A小分子抑制剂-HAMNO调控DNA损伤修复的结构及功能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠上皮细胞TET2/AHR/NLRP3轴经“脑肠通讯”激活mPFC小胶质细胞导致抑郁样行为的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CD200-CD200R轴调控小胶质细胞Mrp8/14释放介导抑郁症发病的作用机
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
补体C3依赖的小胶质细胞突触异常修剪介导幼龄小鼠纳米氧化铝颗粒暴露致自闭症样行为发生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智护到家——肝癌口服靶向药物患者依从行为智能预测与管理微信小程序设计和实现
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小目标检测与DeepSeek大模型的智能医学检测及诊疗研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于点击化学“靶标垂钓”探究小檗碱主要代谢产物-小檗红碱激活“MAPK/cPLA2通路”致肾脏毒性的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小RNA深度测序鉴定重庆地区药用植物病毒病原
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AMPK/mTOR/TFEB通路介导自噬探讨电针对AD小鼠小胶质细胞线粒体功能及认知障碍的作用机制
- 批准号:JCZRLH202500363
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
SHF: Small: Beyond Accelerators - Using FPGAs to Achieve Fine-grained Control of Data-flows in Embedded SoCs
SHF:小型:超越加速器 - 使用 FPGA 实现嵌入式 SoC 中数据流的细粒度控制
- 批准号:
2008799 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Exploring Architectural Support for Full-Stack Equational Reasoning in Critical Embedded Systems
SHF:小型:探索关键嵌入式系统中全栈方程推理的架构支持
- 批准号:
1717779 - 财政年份:2017
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
- 批准号:
1719674 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Uncertainty Modeling and Design Methods for Heterogeneous Embedded Systems
SHF:小型:异构嵌入式系统的不确定性建模和设计方法
- 批准号:
1524909 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: SMALL: Embedded Cooling of High-Performance ICs Using Novel Nanostructured Thermoelectrics: Multiscale Software Development and Device Optimization
SHF:小型:使用新型纳米结构热电材料的高性能 IC 嵌入式冷却:多尺度软件开发和设备优化
- 批准号:
1218839 - 财政年份:2012
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Lifetime Aware System Architecture Design of Single-Chip Embedded Multiprocessors
SHF:小型:单芯片嵌入式多处理器的终身感知系统架构设计
- 批准号:
1116856 - 财政年份:2011
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Measurement and Analysis of Regional Process Variations using Existing and Minimally Invasive On-Chip Embedded Resources
SHF:小型:使用现有和微创片上嵌入式资源测量和分析区域工艺变化
- 批准号:
1118025 - 财政年份:2011
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
- 批准号:
1017074 - 财政年份:2010
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
- 批准号:
1016994 - 财政年份:2010
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
SHF: Small: Automating the Deployment of Distributed Real-time and Embedded System Software using Hybrid Heuristics-based Search Techniques
SHF:小型:使用基于混合启发式的搜索技术自动部署分布式实时和嵌入式系统软件
- 批准号:
0915976 - 财政年份:2009
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant