NeTS: Small: A Language-Based Approach to Deep Packet Inspection: from Theory to Practice
NeTS:Small:基于语言的深度数据包检测方法:从理论到实践
基本信息
- 批准号:1319748
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep packet inspection is at the core of several established and emerging networking applications, such as network intrusion detection and content-aware routing. Due to their expressive power, in recent years regular expressions have been adopted in pattern-sets used for these applications in both industry and academia. Existing high-performance regular expression matching engines are based on finite automata, and are implemented using either logic- or memory-based designs. The former allow peak performance on single packet flows with relatively simple logic, but are not scalable to large numbers of flows; the latter offer scalability in the number of flows at the cost of algorithmic and design complexity. Despite the rich body of work in the area, providing worst-case guarantees is still challenging in the presence of complex regular expressions that include repetitions of wildcards and large character sets. Moreover, existing solutions assume that packets are inspected in-order and after data decompression. This project will develop a language abstraction, data structures, and algorithms for line rate deep packet inspection. In particular, the project will consider open problems in regular expression-based deep packet inspection, namely: (i) handling of complex patterns containing repetitions of wildcards and large character sets, and (ii) inspection of out-of-order packets and compressed traffic. A language-based approach to deep packet inspection will be introduced in order to handle the regular expressions? complexity. This project will integrate concepts from automata theory, practices in data structure and algorithm design, analysis of the requirements of networking applications, and system architecture considerations. The previous work performed by the PI on high speed regular expression matching has attracted the attention of several companies. The PI will leverage these contacts to facilitate the transfer of the proposed research. The PI has added two computer architecture courses to the undergraduate and graduate Electrical and Computer Engineering curriculum at University of Missouri (MU); she will introduce a new networking systems course, which will cover the knowledge generated by this research. The PI will leverage the MU Undergraduate Research Program to involve undergraduate students in the proposed work, which will allow students to work at the intersection of three domains: algorithm and data structure design, system architecture and networking applications. The results of this research will be disseminated through publications and presentations, and by releasing open-source software modules on the PI?s Lab website.
深度包检测是一些已建立和新兴网络应用的核心,例如网络入侵检测和内容感知路由。由于正则表达式的表达能力,近年来在工业和学术界的这些应用程序中使用的模式集中采用了正则表达式。现有的高性能正则表达式匹配引擎是基于有限自动机的,并且使用基于逻辑或基于内存的设计来实现。前者允许在逻辑相对简单的单个数据包流上达到峰值性能,但不能扩展到大量流;后者以算法和设计复杂性为代价,提供了流数量的可伸缩性。尽管在该领域有大量的工作,但是在包含重复通配符和大型字符集的复杂正则表达式存在的情况下,提供最坏情况保证仍然具有挑战性。此外,现有的解决方案假设数据包是在数据解压缩之后按顺序检查的。这个项目将开发一种语言抽象、数据结构和算法,用于线速率深度包检测。特别是,该项目将考虑基于正则表达式的深度数据包检查中的开放问题,即:(i)处理包含重复通配符和大字符集的复杂模式,以及(ii)检查乱序数据包和压缩流量。为了处理正则表达式,将引入一种基于语言的深度包检测方法。的复杂性。该项目将整合自动机理论的概念、数据结构和算法设计的实践、网络应用需求的分析以及系统架构的考虑。PI先前在高速正则表达式匹配方面所做的工作已经引起了几家公司的关注。PI将利用这些联系来促进拟议研究的转移。PI在密苏里大学(MU)的电气与计算机工程本科和研究生课程中增加了两门计算机体系结构课程;她将介绍一门新的网络系统课程,涵盖这项研究所产生的知识。PI将利用MU本科生研究计划让本科生参与拟议的工作,这将允许学生在三个领域的交叉领域工作:算法和数据结构设计,系统架构和网络应用。这项研究的结果将通过出版物和演示以及在PI上发布开源软件模块来传播。s实验室网站。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michela Becchi其他文献
Editorial: Special Issue on Computing Frontiers
- DOI:
10.1007/s11265-019-1439-2 - 发表时间:
2019-01-21 - 期刊:
- 影响因子:1.800
- 作者:
Francesca Palumbo;Michela Becchi - 通讯作者:
Michela Becchi
Michela Becchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michela Becchi', 18)}}的其他基金
SHF: Small: Collaborative Research: Accelerated Data Transformation: A Software-Hardware Stack for Transducers
SHF:小型:协作研究:加速数据转换:传感器的软件硬件堆栈
- 批准号:
1907863 - 财政年份:2019
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CSR: Small: Middleware Technologies for Multi-Accelerator Clusters
CSR:小型:多加速器集群的中间件技术
- 批准号:
1812727 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: The Automata Programming Paradigm for Genomic Analysis
SHF:小型:协作研究:基因组分析的自动机编程范式
- 批准号:
1740583 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: Compiler and Runtime Support for Irregular Applications on Many-core Processors
职业:多核处理器上不规则应用程序的编译器和运行时支持
- 批准号:
1741683 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
- 批准号:
1728850 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
NeTS: Small: A Language-Based Approach to Deep Packet Inspection: from Theory to Practice
NeTS:Small:基于语言的深度数据包检测方法:从理论到实践
- 批准号:
1724934 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: Compiler and Runtime Support for Irregular Applications on Many-core Processors
职业:多核处理器上不规则应用程序的编译器和运行时支持
- 批准号:
1452454 - 财政年份:2015
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
- 批准号:
1513603 - 财政年份:2015
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: The Automata Programming Paradigm for Genomic Analysis
SHF:小型:协作研究:基因组分析的自动机编程范式
- 批准号:
1421765 - 财政年份:2014
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CSR: Small: Scheduling and Virtualization Technologies for Heterogeneous Clusters with Many-core Devices
CSR:小:多核设备异构集群的调度和虚拟化技术
- 批准号:
1216756 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
- 批准号:
2348706 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SHF: SMALL: Language-agnostic Proofs
SHF:SMALL:与语言无关的证明
- 批准号:
2317257 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CompCog: RI: Small: Human-like semantic grammar induction through knowledge distillation from pre-trained language models
CompCog:RI:Small:通过预训练语言模型的知识蒸馏进行类人语义语法归纳
- 批准号:
2313140 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SHF: Small: Automated Unit Test Generation using Large Language Models
SHF:小型:使用大型语言模型自动生成单元测试
- 批准号:
2307742 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Small Scalable Natural Language Models using Explicit Memory
使用显式记忆的小型可扩展自然语言模型
- 批准号:
DP230102775 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Projects
RI: Small: SM-An Active Approach for Data Engineering to Improve Vision-Language Tasks
RI:小型:SM - 一种改进视觉语言任务的数据工程主动方法
- 批准号:
2132724 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Generalizing Adversarial Examples in Natural Language
SaTC:核心:小:概括自然语言中的对抗性示例
- 批准号:
2124538 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
SHF: Small: Practical Dynamic Program Reasoning Across Language Boundaries
SHF:小:跨语言边界的实用动态程序推理
- 批准号:
2146233 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III: Small: From Spatial Language to Spatial Data - a simulation-based approach
III:小:从空间语言到空间数据 - 基于模拟的方法
- 批准号:
2127901 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant














{{item.name}}会员




