SHF:Small: Accurate and Computationally Efficient Predictors of Java Memory Resource Consumption
SHF:Small:Java 内存资源消耗的准确且计算高效的预测器
基本信息
- 批准号:1320498
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Java programming language is widely-used and of great commercial and economic significance. It is favored in part because it features automatic management of the computer memory resources it uses, simplifying such management for the programmer. Memory management in Java (and other managed languages) has reached a plateau in cost and effectiveness because most current techniques are tuned based on a small number of coarse-grained measures gathered while programs run. Substantial improvement might be gained from using more accurate estimation of current and near-future memory use to drive better memory management decisions. This would reduce the time, memory, and energy requirements to run Java programs. This is of significance to the full range of Java applications from small embedded systems through laptops and desktops to large servers. There is therefore an urgent need for techniques to derive better online predictors of Java memory use.The long-term goal of the research program this award will support is to substantially improve memory allocation and garbage collection effectiveness by using better online predictors to drive more sophisticated allocator and collector decisions. The objective of this particular project is to develop machine learning techniques that induce accurate and computationally efficient predictors of characteristics of Java memory allocation that influence memory manager performance. Examples include predicting the volume of objects that become "garbage" (can be reclaimed and reused for future allocations), as well as objects that will be in use for a long time and will not become garbage soon. The approach is to learn models that predict memory usage based on features compiled from observable run-time events like calls to particular methods or allocations of certain objects. Data to learn models will be obtained from analysis of detailed program execution traces. Features will be selected that are both informative of memory use and computable with low space and time overheads. Programs will then be modified to compute these features as they run, and real-time predictive models will be used to predict future memory usage as programs execute. These predictions will be used to improve memory management performance. This will be accomplished by, for example, improving the timing of garbage collection so that it occurs at points during program execution that result in higher memory reclamation with lower effort.
Java编程语言被广泛使用,具有重要的商业和经济意义。它受欢迎的部分原因是它具有自动管理所使用的计算机内存资源的特点,简化了程序员的管理。Java(和其他托管语言)中的内存管理在成本和效率方面已经达到了一个平稳期,因为大多数当前技术都是基于程序运行时收集的少量粗粒度度量进行调优的。通过对当前和近期的内存使用情况进行更准确的估计,从而推动更好的内存管理决策,可能会获得实质性的改进。这将减少运行Java程序所需的时间、内存和能量。这对于从小型嵌入式系统到笔记本电脑和台式机再到大型服务器的所有Java应用程序都具有重要意义。因此,迫切需要一种技术来派生出更好的Java内存使用在线预测器。该奖项将支持的研究项目的长期目标是通过使用更好的在线预测器来驱动更复杂的分配器和收集器决策,从而大幅提高内存分配和垃圾收集的效率。这个特定项目的目标是开发机器学习技术,以诱导对影响内存管理器性能的Java内存分配特征进行准确且计算高效的预测。示例包括预测成为“垃圾”的对象的数量(可以回收并在将来分配时重用),以及将长时间使用但不会很快成为垃圾的对象。该方法是学习基于从可观察的运行时事件(如对特定方法的调用或某些对象的分配)编译的特性来预测内存使用的模型。学习模型的数据将从分析详细的程序执行轨迹中获得。将选择既具有内存使用信息又具有低空间和时间开销的可计算特性。然后,程序将被修改以在运行时计算这些特性,实时预测模型将用于在程序执行时预测未来的内存使用情况。这些预测将用于提高内存管理性能。这可以通过改进垃圾收集的时间来实现,例如,在程序执行期间的某个点进行垃圾收集,从而以更低的工作量获得更高的内存回收。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Eliot Moss其他文献
J. Eliot Moss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Eliot Moss', 18)}}的其他基金
FMitF:Track I: Verified Safe and Fair Machine Learning
FMITF:第一轨:经过验证的安全和公平的机器学习
- 批准号:
2018372 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CNS Core: Small: Managed Languages: From Non-volatile Memory to Persistence
CNS 核心:小型:托管语言:从非易失性内存到持久性
- 批准号:
1909731 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Micro-Virtual Machines for Managed Languages: Abstraction, contained
SHF:媒介:协作研究:托管语言的微型虚拟机:抽象,包含
- 批准号:
1832624 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Portable Performance for Parallel Managed Languages Across the Many-Core Spectrum
CSR:媒介:协作研究:跨多核频谱的并行托管语言的可移植性能
- 批准号:
1833291 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Micro Virtual Machines for Managed Languages: Abstraction, defined and contained
SHF:媒介:协作研究:托管语言的微型虚拟机:抽象、定义和包含
- 批准号:
1409284 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Portable Performance for Parallel Managed Languages Across the Many-Core Spectrum
CSR:媒介:协作研究:跨多核频谱的并行托管语言的可移植性能
- 批准号:
1162246 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
EAGER: Automating Correctness Proofs of Transactionalized Data Structures
EAGER:自动化事务化数据结构的正确性证明
- 批准号:
0953761 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Describing the Operating System for Accurate User-mode Simulation
描述用于精确用户模式模拟的操作系统
- 批准号:
0950410 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SGER: The Chaotic Behavior of Automatic Memory Management
SGER:自动内存管理的混乱行为
- 批准号:
0836542 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR-AES Collaborative: Encore/J: Transparently Recoverable Java for Resilient Distributed Computing
CSR-AES 协作:Encore/J:用于弹性分布式计算的透明可恢复 Java
- 批准号:
0720242 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Accurate Electronic and Vibrational Structure Calculations of Metal-Containing Small Molecules of Importance to Precision Measurement and Laser Cooling
含金属小分子的精确电子和振动结构计算对于精密测量和激光冷却具有重要意义
- 批准号:
2309253 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CSR: Small: RUI: Octopus OS: A High-Performance Cloud OS with Accurate Resource Abstraction.
CSR:小型:RUI:Octopus OS:具有准确资源抽象的高性能云操作系统。
- 批准号:
2324923 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Small: Towards Highly Accurate Map Services
III:小:迈向高精度地图服务
- 批准号:
2203553 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: A novel gene assay for accurate prognosis and prediction of clinical benefits of chemotherapy for early-stage non-small cell lung cancer
I-Corps:一种新型基因检测,用于准确预后和预测早期非小细胞肺癌化疗的临床益处
- 批准号:
2221895 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155097 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FET: Small: Accurate and Scalable Methods for Analysis of Complex Genomic Populations
FET:小型:用于分析复杂基因组群体的准确且可扩展的方法
- 批准号:
2109983 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CHS: Small: Developing and Validating a Physically Accurate Light-Scattering Model for the Rendering of Bird and Other Dinosaur Feathers
CHS:小型:开发和验证用于渲染鸟类和其他恐龙羽毛的物理精确光散射模型
- 批准号:
2007974 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
AF: Small: Shortest Paths and Distance Parameters: Faster, Fault-Tolerant and More Accurate
AF:小:最短路径和距离参数:更快、容错且更准确
- 批准号:
2129139 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant