ATD: Efficient online detection based on multiple sensors, with applications to cybersecurity and discovery of biological threats
ATD:基于多个传感器的高效在线检测,应用于网络安全和生物威胁发现
基本信息
- 批准号:1322353
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on threat detection schemes based on simultaneously observed multiple data sequences. The proper use of multiple sources of information, or multiple sensors, ensures high sensitivity of the detection procedure. However, multiple streams of diverse information can cause false alarms. What are the optimal statistical techniques of combining mixed types of data to yield a quick and error-free detection? Proposed statistical methods deal with potential threats by detecting heterogeneities and anomalies and locating change points in the distribution of multidimensional data. It is assumed that a number of sensors simultaneously collect and report data sequences. When a significant event occurs and a potential threat appears, the distribution of one or several sequences changes. The goal is to detect a threat as soon as possible, subject to a low rate of false alarms. Derivation of optimal threat detection algorithms on multiple sequences will be based on the recently developed theory and methodology of multiple comparisons in sequential experiments. These new techniques introduced by the PI and his student led to tests of multiple hypotheses that control both the familywise error rate and the familywise power at a low expected sampling cost. This suggests several approaches to the quick multi-sensor change-point detection. Analogues of CUSUM, Bayesian, and asymptotically pointwise optimal change-point detection tools will be developed based on the new methodology in order to control the probability of a false alarm, the missed discovery rate, and to minimize the mean detection delay under these constraints. Quick detection of threats by discovering changes in distributions, patterns, and trends is one of the most vital problems in quality control, market analysis, epidemiology, climatology, target tracking, and other fields. Among wide areas of application, this project particularly focuses on detecting breaches in cyber security and biological threats such as epidemics and bioterrorist attacks. The project will provide general tools for the prompt reaction to threatening anomalies in real situations such as (i) recognizing a pre-epidemic pattern and signalling an epidemic threat based on geospatial public health surveillance data in different regions, (ii) detecting computer threats and breaches in cyber security, based on multiple data streams, and (iii) detecting potential threats from extual analysis of communication networks. An important modern application of change-point detection on multiple data streams appears in DNA sequencing. The possibility of utilizing the prior information in sequential change-point analysis of multiple data streams opens doors for wide applications. It will allow to predict threats and make forecasts for a number of processes that exhibit a two-phase or multi-phase behavior, such as the epidemics and inter-epidemic periods, economic growth and recession, and spikes in energy prices. Developed methods of fast change-point detection will be used for the early detection of unknown targets and intrusions, fraud activity, unusual behavior at vital locations, detection and classification of pre-epidemic trends, and also, for the prevention of epidemics and terrorist attacks.
该项目的重点是基于同时观察到的多个数据序列的威胁检测方案。多个信息源或多个传感器的正确使用确保了检测程序的高灵敏度。然而,不同信息的多个流可能导致错误警报。什么是最佳的统计技术相结合的混合类型的数据,以产生一个快速和无错误的检测?提出的统计方法通过检测异质性和异常以及定位多维数据分布中的变化点来处理潜在的威胁。假设多个传感器同时收集和报告数据序列。当重大事件发生和潜在威胁出现时,一个或多个序列的分布发生变化。目标是尽快检测到威胁,并降低误报率。多序列最优威胁检测算法的推导将基于最近发展起来的序列实验中多重比较的理论和方法。PI和他的学生引入的这些新技术导致了多个假设的检验,这些假设以较低的预期抽样成本控制了家族错误率和家族功效。这提出了快速多传感器变化点检测的几种方法。类比的CANUM,贝叶斯,渐近逐点最优变点检测工具将开发基于新的方法,以控制误报的概率,错过的发现率,并尽量减少这些约束下的平均检测延迟。通过发现分布、模式和趋势的变化来快速检测威胁是质量控制、市场分析、流行病学、气候学、目标跟踪和其他领域中最重要的问题之一。在广泛的应用领域中,该项目特别侧重于检测网络安全漏洞和流行病和生物恐怖袭击等生物威胁。该项目将提供通用工具,以便对真实的情况下的威胁性异常情况作出迅速反应,例如:(一)根据不同区域的地理空间公共卫生监测数据,识别流行病前的模式并发出流行病威胁信号;(二)根据多个数据流,检测计算机威胁和网络安全漏洞;(三)通过对通信网络的外部分析,检测潜在威胁。多数据流上的变点检测的重要现代应用出现在DNA测序中。利用先验信息进行多数据流序贯变点分析的可能性为广泛的应用打开了大门。它将允许预测威胁,并对一些表现出两阶段或多阶段行为的过程进行预测,例如流行病和流行病期间,经济增长和衰退以及能源价格飙升。开发的快速变化点检测方法将用于早期检测未知目标和入侵、欺诈活动、重要地点的异常行为、流行病前趋势的检测和分类,以及预防流行病和恐怖袭击。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Baron其他文献
Detection and estimation of multiple transient changes
多个瞬态变化的检测和估计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.5
- 作者:
Michael Baron;Sergey V. Malov - 通讯作者:
Sergey V. Malov
Tracking Residential Real Estate Capital Growth In NSW by Constructing A Price Index from Sales Transactions
通过根据销售交易构建价格指数来跟踪新南威尔士州住宅房地产资本增长
- DOI:
10.47852/bonviewjdsis32021344 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Emad Nashed;Michael Baron - 通讯作者:
Michael Baron
Establishing An Optimal Online Phishing Detection Method: Evaluating Topological NLP Transformers on Text Message Data
建立最佳的在线网络钓鱼检测方法:评估文本消息数据上的拓扑 NLP 转换器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Helen Milner;Michael Baron - 通讯作者:
Michael Baron
System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games
实时策略游戏集成终身强化学习代理的系统设计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Indranil Sur;Zachary A. Daniels;Abrar Rahman;Kamil Faber;Gianmarco J. Gallardo;Tyler L. Hayes;Cameron Taylor;Mustafa Burak Gurbuz;James Smith;Sahana P Joshi;N. Japkowicz;Michael Baron;Z. Kira;Christopher Kanan;Roberto Corizzo;Ajay Divakaran;M. Piacentino;Jesse Hostetler;Aswin Raghavan - 通讯作者:
Aswin Raghavan
What are the Risk Factors for Mortality Among Patients Who Suffer Le Fort III Fractures?
- DOI:
10.1016/j.joms.2022.08.017 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Dani Stanbouly;Michael Baron;Syed Salim Abdul-Wasay;Rafi Isaac;Humeyra Kocaelli;Firat Selvi;R. John Tannyhill;Michael D. Turner - 通讯作者:
Michael D. Turner
Michael Baron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Baron', 18)}}的其他基金
Quality and Productivity Research Conference - Data and Science Is a Winning Alliance
质量和生产力研究会议 - 数据和科学是双赢的联盟
- 批准号:
1916884 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Statistical Detection of New Patterns and Potential Threats in Geospatial Sequences of Social and Political Events
合作研究:ATD:社会和政治事件地理空间序列中新模式和潜在威胁的统计检测
- 批准号:
1737960 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
ATD: Efficient online detection based on multiple sensors, with applications to cybersecurity and discovery of biological threats
ATD:基于多个传感器的高效在线检测,应用于网络安全和生物威胁发现
- 批准号:
1534233 - 财政年份:2014
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
- 批准号:
BB/F006764/2 - 财政年份:2011
- 资助金额:
$ 39.25万 - 项目类别:
Research Grant
Development of an improved (DIVA) vaccine against peste des petits ruminants and technology for a control strategy in endemic areas
开发针对小反刍兽疫的改良 (DIVA) 疫苗和流行地区控制策略技术
- 批准号:
BB/H009027/1 - 财政年份:2010
- 资助金额:
$ 39.25万 - 项目类别:
Research Grant
Sequential testing of multiple hypotheses, simultaneous confidence estimation, and multichannel change-point detection
多个假设的顺序测试、同时置信度估计和多通道变化点检测
- 批准号:
1007775 - 财政年份:2010
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
- 批准号:
BB/F00740X/1 - 财政年份:2009
- 资助金额:
$ 39.25万 - 项目类别:
Research Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
- 批准号:
BB/F006764/1 - 财政年份:2008
- 资助金额:
$ 39.25万 - 项目类别:
Research Grant
相似海外基金
OneFit.ai - A sustainable and efficient way to purchase shoes online
OneFit.ai - 一种可持续且高效的在线购买鞋子的方式
- 批准号:
10114095 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
SME Support
Compact efficient lasers for bio-instrumentation illumination and online environmental monitoring
用于生物仪器照明和在线环境监测的紧凑高效激光器
- 批准号:
558268-2020 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Alliance Grants
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
- 批准号:
10379613 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
- 批准号:
2240733 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Collaborative Online Optimization for Efficient Model-Based Learning
基于模型的高效学习的协作在线优化
- 批准号:
2136206 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
Compact efficient lasers for bio-instrumentation illumination and online environmental monitoring
用于生物仪器照明和在线环境监测的紧凑高效激光器
- 批准号:
558268-2020 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Alliance Grants
Efficient and privacy-enhancing consent management for health informatics data sharing
针对健康信息学数据共享的高效且增强隐私的同意管理
- 批准号:
10385293 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Strengthening Makerere University's Research Administration Capacity for efficient management of NIH grant awards (SMAC)
加强麦克雷雷大学的研究管理能力,以有效管理 NIH 拨款 (SMAC)
- 批准号:
10225666 - 财政年份:2021
- 资助金额:
$ 39.25万 - 项目类别:
Supply-side automation and component diversification of Plyable's online manufacturing marketplace: efficient and agile CNC manufacturing
Plyable 在线制造市场的供应方自动化和组件多样化:高效、敏捷的 CNC 制造
- 批准号:
57068 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别:
Feasibility Studies
mDOT TR&D2 (Optimization): Dynamic Optimization of Continuously Adapting mHealth Interventions via Prudent, Statistically Efficient, and Coherent Reinforcement Learning
mDOT TR
- 批准号:
10541807 - 财政年份:2020
- 资助金额:
$ 39.25万 - 项目类别: