Collaborative Research: ATD: Statistical Detection of New Patterns and Potential Threats in Geospatial Sequences of Social and Political Events

合作研究:ATD:社会和政治事件地理空间序列中新模式和潜在威胁的统计检测

基本信息

  • 批准号:
    1737960
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The project focuses on the statistical detection and interpretation of new trends and geospatial pattern changes in sequences of social and political events. Millions of such events occur on a local, regional, national, and international scale. They are being recorded in publicly available domains, fed from a multitude of sources, from news media to social media, blogs, and tweets. Events include civic unrests, demonstrations, crimes, arrests, human rights activities, political conflicts, protests, cyber attacks, terrorist activities, publication of news, their analyses and discussions, and so on. Such events occur at random times, while their location, size, and consequences involve a lot of uncertainty. An abrupt change of pattern, appearance of a new distribution or trend is typically caused by a new circumstance that may represent a potential threat. For the prompt detection of such threats, sensitive yet reliable and computationally feasible statistical algorithms for change-point detection in geospatial sequences will be elaborated, followed by social, economic, and political interpretation of statistically detectable changes. The project will provide general tools for the prompt reaction to threatening anomalies identified in large continuously monitored databases, with a special focus on new patterns that represent potential threats to homeland security.Quick detection of sudden changes and unexpectedly appearing new trends is crucially important for the prompt reaction to potential security threats. To handle large data sets of high dimension in change-point detection problems, to combine simultaneously observed geospatial sequences of event data, and to develop computationally feasible algorithms for fast threat detection, three general approaches are exploited: (1) recursive change-point detection algorithms that are updated with each new data point while storing and processing minimum required information at each step; (2) auxiliary change-point warning schemes represented by computationally inexpensive and fast algorithms for the early detection of potential threats; (3) sequentially planned change-point detection algorithms that invoke the main detection scheme at the special interim time points only, and (4) maximum use of prior information by means of Bayesian detection algorithms.
该项目的重点是从统计上发现和解释社会和政治事件序列中的新趋势和地理空间模式变化。数以百万计的此类事件发生在地方、区域、国家和国际范围内。它们被记录在公开的领域,从新闻媒体到社交媒体、博客和推特等多种来源提供信息。事件包括公民骚乱、示威、犯罪、逮捕、人权活动、政治冲突、抗议、网络攻击、恐怖活动、新闻的发布、分析和讨论等,这些事件在随机时间发生,其地点、规模和后果都存在很大的不确定性。模式的突然变化、新分布或趋势的出现通常是由可能代表潜在威胁的新情况引起的。为了及时检测这种威胁,敏感而可靠的和计算上可行的统计算法,在地理空间序列中的变点检测将详细说明,其次是社会,经济和政治的统计上可检测的变化的解释。该项目将提供通用工具,以便对持续监控的大型数据库中发现的威胁性异常做出迅速反应,特别关注对国土安全构成潜在威胁的新模式。快速检测突然变化和意外出现的新趋势对于对潜在安全威胁做出迅速反应至关重要。为了在变点检测问题中处理高维的大数据集,结合联合收割机同时观测到的事件的地理空间序列,以及开发用于快速威胁检测的计算上可行的算法,利用了三种一般方法:(1)递归变点检测算法,其随着每个新的数据点更新,同时在每一步存储和处理最小所需信息;(2)辅助变点警报方案,其代表是用于早期检测潜在威胁的计算上廉价和快速的算法;(3)顺序规划的变点检测算法,其仅在特殊的中间时间点调用主检测方案;以及(4)借助于贝叶斯检测算法最大限度地使用先验信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Baron其他文献

Detection and estimation of multiple transient changes
多个瞬态变化的检测和估计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Michael Baron;Sergey V. Malov
  • 通讯作者:
    Sergey V. Malov
Tracking Residential Real Estate Capital Growth In NSW by Constructing A Price Index from Sales Transactions
通过根据销售交易构建价格指数来跟踪新南威尔士州住宅房地产资本增长
Establishing An Optimal Online Phishing Detection Method: Evaluating Topological NLP Transformers on Text Message Data
建立最佳的在线网络钓鱼检测方法:评估文本消息数据上的拓扑 NLP 转换器
System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games
实时策略游戏集成终身强化学习代理的系统设计
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Indranil Sur;Zachary A. Daniels;Abrar Rahman;Kamil Faber;Gianmarco J. Gallardo;Tyler L. Hayes;Cameron Taylor;Mustafa Burak Gurbuz;James Smith;Sahana P Joshi;N. Japkowicz;Michael Baron;Z. Kira;Christopher Kanan;Roberto Corizzo;Ajay Divakaran;M. Piacentino;Jesse Hostetler;Aswin Raghavan
  • 通讯作者:
    Aswin Raghavan
What are the Risk Factors for Mortality Among Patients Who Suffer Le Fort III Fractures?
  • DOI:
    10.1016/j.joms.2022.08.017
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dani Stanbouly;Michael Baron;Syed Salim Abdul-Wasay;Rafi Isaac;Humeyra Kocaelli;Firat Selvi;R. John Tannyhill;Michael D. Turner
  • 通讯作者:
    Michael D. Turner

Michael Baron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Baron', 18)}}的其他基金

Quality and Productivity Research Conference - Data and Science Is a Winning Alliance
质量和生产力研究会议 - 数据和科学是双赢的联盟
  • 批准号:
    1916884
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Efficient online detection based on multiple sensors, with applications to cybersecurity and discovery of biological threats
ATD:基于多个传感器的高效在线检测,应用于网络安全和生物威胁发现
  • 批准号:
    1534233
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
ATD: Efficient online detection based on multiple sensors, with applications to cybersecurity and discovery of biological threats
ATD:基于多个传感器的高效在线检测,应用于网络安全和生物威胁发现
  • 批准号:
    1322353
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
  • 批准号:
    BB/F006764/2
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Development of an improved (DIVA) vaccine against peste des petits ruminants and technology for a control strategy in endemic areas
开发针对小反刍兽疫的改良 (DIVA) 疫苗和流行地区控制策略技术
  • 批准号:
    BB/H009027/1
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Sequential testing of multiple hypotheses, simultaneous confidence estimation, and multichannel change-point detection
多个假设的顺序测试、同时置信度估计和多通道变化点检测
  • 批准号:
    1007775
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
  • 批准号:
    BB/F00740X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Live attenuated nairovirus vaccines: targeted mutations in a recombinant virus
内罗病毒减毒活疫苗:重组病毒的靶向突变
  • 批准号:
    BB/F006764/1
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了