Local Algorithms for Random Networks: Power, Limitations and Applications

随机网络的局部算法:能力、限制和应用

基本信息

  • 批准号:
    1335155
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to develop systematic understanding of the performance and limitations of local algorithms for combinatorial optimization problems on random networks. The scale of modern technological, communication and social networks renders many computational tools and concepts too impractical to meet the contemporary computational speeds. In light of this challenge, the research on network computational models has recently focused on local algorithms paradigm. One of the most common generative models for real life networks is the random graph model. Thus the research focuses on the performance and limitations of local algorithms for random graphs. A particular focus is on studying the so-called solution space geometry of combinatorial problems on random graphs and its implications for the design and analysis of local algorithms. It is now known that certain optimization problems undergo a phase transition property, dubbed shattering, described as splitting of the space of feasible solutions into many disconnected components. Many attempts to construct algorithms which perform beyond this phase transition point did not succeed. Thus the shattering property is conjectured to be the main "culprit" for the non-existence of local algorithms beyond the phase transition point. A recent work of the PI establishes the non-existence of local algorithms for some optimization problems beyond this phase transition point, thus establishing for the first time the direct link between the shattering phase transition property and the performance of algorithms. The research focuses on the systematic study of this fascinating link between the phase transition property and the design of algorithms. If successful, the results of this research will provide a deep connection between the performance and algorithmic complexity of local algorithms and structural properties of random networks. The research agenda is truly interdisciplinary, lying at the crossroads of several fields. The activities draw on tools from a variety of disciplines, including the theory of algorithms, combinatorics and graph theory, applied probability and statistical physics, thus bringing together ideas from a diverse set of communities. The results of this research will be disseminated in top journals and conferences in the respective fields. Research seminars will be conducted to introduce students to the topic of algorithms and computations on networks.
该奖项的研究目标是对随机网络上组合优化问题的局部算法的性能和局限性进行系统的理解。现代技术、通信和社会网络的规模使得许多计算工具和概念过于不切实际,无法满足当代的计算速度。鉴于这一挑战,网络计算模型的研究最近主要集中在局部算法范式上。现实生活网络中最常见的生成模型之一是随机图模型。因此,研究的重点是随机图局部算法的性能和局限性。特别的重点是研究所谓的随机图组合问题的解空间几何及其对局部算法的设计和分析的影响。现在我们知道,某些优化问题经历了一种称为破碎的相变特性,即可行解的空间分裂成许多不相连的组件。许多尝试构建超越这一相变点的算法都没有成功。因此,我们推测,在相变点之外不存在局部算法的主要“罪魁祸首”是破碎性。PI最近的一项工作建立了局部算法在该相位点以外的一些优化问题的不存在性,从而首次建立了破碎相变特性与算法性能之间的直接联系。研究的重点是系统地研究相变特性与算法设计之间的这种迷人联系。如果成功,本研究的结果将为局部算法的性能和算法复杂性以及随机网络的结构特性之间提供深入的联系。研究议程是真正的跨学科,位于几个领域的十字路口。这些活动利用了各种学科的工具,包括算法理论、组合学和图论、应用概率论和统计物理学,从而汇集了来自不同社区的想法。这项研究的结果将在各自领域的顶级期刊和会议上发表。将举办研究研讨会,向学生介绍网络上的算法和计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gamarnik其他文献

Hamiltonian completions of sparse random graphs
  • DOI:
    10.1016/j.dam.2005.05.001
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Gamarnik;Maxim Sviridenko
  • 通讯作者:
    Maxim Sviridenko
Integrating High-Dimensional Functions Deterministically
确定性地积分高维函数
  • DOI:
    10.48550/arxiv.2402.08232
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gamarnik;Devin Smedira
  • 通讯作者:
    Devin Smedira
The stability of the deterministic Skorokhod problem is undecidable
  • DOI:
    10.1007/s11134-014-9424-8
  • 发表时间:
    2014-10-19
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    David Gamarnik;Dmitriy Katz
  • 通讯作者:
    Dmitriy Katz
Computing the Volume of a Restricted Independent Set Polytope Deterministically
确定性计算受限独立集多面体的体积
  • DOI:
    10.48550/arxiv.2312.03906
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gamarnik;Devin Smedira
  • 通讯作者:
    Devin Smedira
On the Value of a Random Minimum Weight Steiner Tree
  • DOI:
    10.1007/s00493-004-0013-z
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Béla Bollobás*;David Gamarnik;Oliver Riordan;Benny Sudakov†
  • 通讯作者:
    Benny Sudakov†

David Gamarnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gamarnik', 18)}}的其他基金

AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
  • 批准号:
    2233897
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Inference in High-Dimensional Statistical Models: Algorithmic Tractability and Computational Barriers
高维统计模型中的推理:算法易处理性和计算障碍
  • 批准号:
    2015517
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Statistical Physics Methods and Algorithmic Applications in Graphical Games and Combinatorial Optimization
统计物理方法和算法在图形游戏和组合优化中的应用
  • 批准号:
    1031332
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Stochastic Networks in the Heavy Traffic Regime: Algorithms, Approximations and Applications
高流量情况下的随机网络:算法、近似值和应用
  • 批准号:
    0726733
  • 财政年份:
    2007
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306439
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Conference: 21st International Conference on Random Structures & Algorithms
会议:第21届国际随机结构会议
  • 批准号:
    2309068
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
  • 批准号:
    2748743
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Adaptive numerical algorithms for PDE problems with random inputs
具有随机输入的偏微分方程问题的自适应数值算法
  • 批准号:
    2741369
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
  • 批准号:
    RGPIN-2019-04269
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
A study of stochastic gradient descent algorithms in the high-dimensional limit using random matrix theory
利用随机矩阵理论研究高维极限下的随机梯度下降算法
  • 批准号:
    569306-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Random environments, stochastic equations, and randomized algorithms
随机环境、随机方程和随机算法
  • 批准号:
    EP/V027824/1
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
  • 批准号:
    RGPIN-2019-04269
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Grants Program - Individual
Improved algorithms via random sampling
通过随机采样改进算法
  • 批准号:
    DP210103849
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了