Stochastic Networks in the Heavy Traffic Regime: Algorithms, Approximations and Applications

高流量情况下的随机网络:算法、近似值和应用

基本信息

  • 批准号:
    0726733
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This project proposes to study research on stochastic processing networks in the heavy trafficregime. The focus will be on the creation of constructive approximations methods for the performanceanalysis questions arising in the area of stochastic processing networks, as well as extending the scopeof the stochastic networks framework to the new domains of applications. The project will pursue athree-fold goal: extending the applicability of the heavy traffic theory to stochastic queueing networksoperating in the equilibrium (steady-state) regime, creating a performance analysis framework for largescale call center models in the heavy traffic regime, and creating a general framework for modelingstochastic queueing processes with shared resources in the heavy traffic regime.If successful, the results of the research will have the following important implications. For thefield of stochastic networks in the heavy traffic regime it will make heuristic approaches of analyzingnetworks in equilibrium, into a theory and thus making a formal connection between diffusion processesand the underlying stochastic networks in the equilibrium regime. In the area of large scale callcenter models it will provide general and practical methods for the performance of such systems inthe heavy traffic regime, without the restrictive assumptions on the statistical properties of the calllengths distribution. The state of the art techniques can only handle the special case of exponentiallydistributed call lengths. If successful the project will also provide methods for analyzing call centersin the non-stationary regime, which is the predominant regime of call center operations. The nonstationarityissue will be addressed by obtaining bounds on the relaxation times of large scale callcenter models. Finally, by utilizing a combination of methods, such as the theory of Markov randomfields, a systematic theory of queueing models with shared resources in the heavy traffic regime will beconsidered, with a specific goal of constructive performance analysis methods. Stochastic systems withshared resources appear in a variety of fields, including communication networks, computer systemsand business processes. Yet constructive and general theory of such processes is lacking. The projectwill be an important step in the direction of building such a theory.
本项目主要研究交通繁忙时的随机处理网络。重点将是建立建设性的近似方法的performanceanalysis问题中出现的随机处理网络的区域,以及扩展scopeof随机网络框架的新领域的应用。该项目将追求三重目标:将重业务理论的适用性扩展到随机排队网络的均衡运行(稳态)制度,建立一个性能分析框架的大规模呼叫中心模型在繁忙的交通制度,并建立一个通用框架的modelingstochastic排队过程与共享资源在繁忙的交通制度。如果成功,研究结果将产生以下重要影响。对于交通繁忙状态下的随机网络领域,它将使分析网络平衡的启发式方法成为一种理论,从而使扩散过程与平衡状态下的随机网络之间建立正式的联系。在大规模呼叫中心模型领域,它将提供在繁忙的业务状况下,这类系统的性能的一般和实用的方法,没有对呼叫量分布的统计特性的限制性假设。最先进的技术只能处理exponentiallydistributed调用长度的特殊情况。如果成功的话,该项目还将提供分析呼叫中心在非平稳制度,这是呼叫中心运营的主要制度的方法。非平稳性问题将通过获得大规模呼叫中心模型的弛豫时间的界限来解决。最后,通过利用诸如马尔可夫随机场理论等方法的组合,将考虑繁忙交通状态下共享资源的排队模型的系统理论,并以建设性性能分析方法为具体目标。具有共享资源的随机系统广泛存在于通信网络、计算机系统和商业过程等领域。然而,这种过程的建设性和一般性的理论是缺乏的。该项目可能是朝着建立这样一种理论的方向迈出的重要一步.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Gamarnik其他文献

Hamiltonian completions of sparse random graphs
  • DOI:
    10.1016/j.dam.2005.05.001
  • 发表时间:
    2005-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Gamarnik;Maxim Sviridenko
  • 通讯作者:
    Maxim Sviridenko
Integrating High-Dimensional Functions Deterministically
确定性地积分高维函数
  • DOI:
    10.48550/arxiv.2402.08232
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gamarnik;Devin Smedira
  • 通讯作者:
    Devin Smedira
The stability of the deterministic Skorokhod problem is undecidable
  • DOI:
    10.1007/s11134-014-9424-8
  • 发表时间:
    2014-10-19
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    David Gamarnik;Dmitriy Katz
  • 通讯作者:
    Dmitriy Katz
Computing the Volume of a Restricted Independent Set Polytope Deterministically
确定性计算受限独立集多面体的体积
  • DOI:
    10.48550/arxiv.2312.03906
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Gamarnik;Devin Smedira
  • 通讯作者:
    Devin Smedira
On the Value of a Random Minimum Weight Steiner Tree
  • DOI:
    10.1007/s00493-004-0013-z
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Béla Bollobás*;David Gamarnik;Oliver Riordan;Benny Sudakov†
  • 通讯作者:
    Benny Sudakov†

David Gamarnik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Gamarnik', 18)}}的其他基金

AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
  • 批准号:
    2233897
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Inference in High-Dimensional Statistical Models: Algorithmic Tractability and Computational Barriers
高维统计模型中的推理:算法易处理性和计算障碍
  • 批准号:
    2015517
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Local Algorithms for Random Networks: Power, Limitations and Applications
随机网络的局部算法:能力、限制和应用
  • 批准号:
    1335155
  • 财政年份:
    2013
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Statistical Physics Methods and Algorithmic Applications in Graphical Games and Combinatorial Optimization
统计物理方法和算法在图形游戏和组合优化中的应用
  • 批准号:
    1031332
  • 财政年份:
    2010
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似国自然基金

军民两用即兴网(Ad Hoc Networks)的研究
  • 批准号:
    60372093
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Interplay of heavy metal homeostasis and cell growth-related signaling networks
重金属稳态和细胞生长相关信号网络的相互作用
  • 批准号:
    10431618
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
Interplay of heavy metal homeostasis and cell growth-related signaling networks
重金属稳态与细胞生长相关信号网络的相互作用
  • 批准号:
    10676781
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
Project 1: How mindfulness modulates craving and brain networks in moderate-to-heavy drinkers
项目 1:正念如何调节中度至重度饮酒者的渴望和大脑网络
  • 批准号:
    10310700
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
Investigation of involvement and in-tree networks of endophytes in heavy metal accumulation in trees
内生菌参与树木重金属积累的树内网络研究
  • 批准号:
    16K08110
  • 财政年份:
    2016
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Imaging heme based mitochondrial-cell signaling networks in cell and animal models of heavy metal toxicity
重金属毒性细胞和动物模型中基于血红素的线粒体细胞信号网络成像
  • 批准号:
    9059090
  • 财政年份:
    2015
  • 资助金额:
    $ 24.5万
  • 项目类别:
Imaging heme based mitochondrial-cell signaling networks in cell and animal models of heavy metal toxicity
重金属毒性细胞和动物模型中基于血红素的线粒体细胞信号网络成像
  • 批准号:
    8927908
  • 财政年份:
    2015
  • 资助金额:
    $ 24.5万
  • 项目类别:
Assessing the full impacts of high efficiency heavy vehicles in urban traffic networks using new analytical tools.
使用新的分析工具评估高效重型车辆对城市交通网络的全面影响。
  • 批准号:
    ARC : LP0233238
  • 财政年份:
    2002
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Linkage Projects
ITR: Cross-Layer Optimization For 4G Wireless Networks: Heavy-Tailed Traffic, Multiuser Channels, and Pseudocells
ITR:4G 无线网络的跨层优化:重尾流量、多用户通道和伪小区
  • 批准号:
    0220118
  • 财政年份:
    2002
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Assessing the full impacts of high efficiency heavy vehicles in urban traffic networks using new analytical tools.
使用新的分析工具评估高效重型车辆对城市交通网络的全面影响。
  • 批准号:
    LP0233238
  • 财政年份:
    2002
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Linkage Projects
Asymptotics and Bounds for Stochastic Networks in the Presence of Heavy Tails
存在重尾的情况下随机网络的渐近和界限
  • 批准号:
    0115034
  • 财政年份:
    2001
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了