Statistical Physics Methods and Algorithmic Applications in Graphical Games and Combinatorial Optimization
统计物理方法和算法在图形游戏和组合优化中的应用
基本信息
- 批准号:1031332
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The statistical physics field is devoted to the macroscopic properties of matter using a variety of prob-abilistic, statistical and combinatorial tools. Recently, however, it became apparent that some of the tools and observations originating from statistical physics, have applications far beyond their intended scope and are found useful in a variety of fields outside of statistical physics, such as coding theory, information theory,statistical inference in Markov Random Field, and more recently in several core areas of operations research,such as combinatorial optimization and game theory. Specifically, it was discovered, partially in PI's prior work,that the so-called correlation decay (long-range independence) property studied in great depth in statistical physics, has far reaching applications for the design and analysis of algorithms. The goal of the present proposal is to develop this promising approach in a systematic way. Specifically, the PI intends to focus on designing fast (polynomial time) algorithms in the following three challenging algorithmic areas: a) computing pure and mixed Nash equilibrium in graphical games; b) designing deterministic approximation algorithms for counting the number of feasible solutions of an integer programming problem and the problem of computing a volume of a polytope; and c) combinatorial optimization/integer programming problems with stochastic objectives. This is an exciting new research agenda, which has not been pursued in the operation research field before. The research will lead to new algorithmic design tools and strengthen a newly emerging connections between the fields of algorithms, combinatorial optimization, game theory on the one hand, and statistical physics on the other hand.
统计物理领域致力于使用各种概率、统计和组合工具来研究物质的宏观性质。然而,最近变得明显的是,一些起源于统计物理的工具和观测,其应用远远超出了它们预期的范围,并在统计物理之外的各种领域被发现有用,例如编码理论、信息论、马尔可夫随机场中的统计推理,以及最近在运筹学的几个核心领域,如组合优化和博弈论。具体地说,人们发现,在统计物理学中深入研究的所谓的相关衰变(长程独立)性质,在算法的设计和分析中有着深远的应用。本提案的目标是以系统的方式发展这一有希望的办法。具体地说,PI计划致力于在以下三个具有挑战性的算法领域中设计快速(多项式时间)算法:a)计算图形游戏中的纯和混合纳什均衡;b)设计用于计算整数规划问题和计算多面体体积的可行解的确定性近似算法;以及c)具有随机目标的组合优化/整数规划问题。这是一个令人振奋的新研究议程,这是运筹学领域以前从未追求过的。这项研究将带来新的算法设计工具,并加强算法、组合优化、博弈论和统计物理等领域之间新出现的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gamarnik其他文献
Hamiltonian completions of sparse random graphs
- DOI:
10.1016/j.dam.2005.05.001 - 发表时间:
2005-11-01 - 期刊:
- 影响因子:
- 作者:
David Gamarnik;Maxim Sviridenko - 通讯作者:
Maxim Sviridenko
Integrating High-Dimensional Functions Deterministically
确定性地积分高维函数
- DOI:
10.48550/arxiv.2402.08232 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Gamarnik;Devin Smedira - 通讯作者:
Devin Smedira
The stability of the deterministic Skorokhod problem is undecidable
- DOI:
10.1007/s11134-014-9424-8 - 发表时间:
2014-10-19 - 期刊:
- 影响因子:0.700
- 作者:
David Gamarnik;Dmitriy Katz - 通讯作者:
Dmitriy Katz
Computing the Volume of a Restricted Independent Set Polytope Deterministically
确定性计算受限独立集多面体的体积
- DOI:
10.48550/arxiv.2312.03906 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David Gamarnik;Devin Smedira - 通讯作者:
Devin Smedira
On the Value of a Random Minimum Weight Steiner Tree
- DOI:
10.1007/s00493-004-0013-z - 发表时间:
2004-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Béla Bollobás*;David Gamarnik;Oliver Riordan;Benny Sudakov† - 通讯作者:
Benny Sudakov†
David Gamarnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gamarnik', 18)}}的其他基金
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
- 批准号:
2233897 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Inference in High-Dimensional Statistical Models: Algorithmic Tractability and Computational Barriers
高维统计模型中的推理:算法易处理性和计算障碍
- 批准号:
2015517 - 财政年份:2020
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Local Algorithms for Random Networks: Power, Limitations and Applications
随机网络的局部算法:能力、限制和应用
- 批准号:
1335155 - 财政年份:2013
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Stochastic Networks in the Heavy Traffic Regime: Algorithms, Approximations and Applications
高流量情况下的随机网络:算法、近似值和应用
- 批准号:
0726733 - 财政年份:2007
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/2 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Fellowship
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/1 - 财政年份:2022
- 资助金额:
$ 33.71万 - 项目类别:
Fellowship
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2022
- 资助金额:
$ 33.71万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2021
- 资助金额:
$ 33.71万 - 项目类别:
Discovery Grants Program - Individual
Homogenization Methods in Statistical Physics
统计物理中的均质化方法
- 批准号:
2137909 - 财政年份:2021
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Homogenization Methods in Statistical Physics
统计物理中的均质化方法
- 批准号:
2055226 - 财政年份:2021
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2020
- 资助金额:
$ 33.71万 - 项目类别:
Discovery Grants Program - Individual
Efficient Monte Carlo Methods for Nonequilibrium Statistical Physics
非平衡统计物理的高效蒙特卡罗方法
- 批准号:
2012207 - 财政年份:2020
- 资助金额:
$ 33.71万 - 项目类别:
Standard Grant
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
- 批准号:
RGPIN-2019-05450 - 财政年份:2019
- 资助金额:
$ 33.71万 - 项目类别:
Discovery Grants Program - Individual
Quantum and semi-classical dynamics of random spin chains: models and methods for quantum non-ergodic statistical physics
随机自旋链的量子和半经典动力学:量子非遍历统计物理的模型和方法
- 批准号:
1508538 - 财政年份:2016
- 资助金额:
$ 33.71万 - 项目类别:
Continuing Grant














{{item.name}}会员




