Generalized dualities relating gravitational theories in 4-dimensional Anti-deSitter space with 3-dimensional conformal field theories
4 维 Anti-deSitter 空间中的引力理论与 3 维共形场论的广义对偶性
基本信息
- 批准号:212628803
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Anti-deSitter/Conformal Field Theory (AdS/CFT) correspondence predicts that the number of dimensions is a matter of perspective: we can choose to describe Nature as obeying one set of laws, including gravity, in four dimensions or, equivalently, obeying a different set of laws, excluding gravity, in three dimensions. Despite the radically different descriptions, we have no way to determine which of these dual formulations is “really” true. An analogous phenomenon occurs in everyday life. A hologram is a 2- dimensional object, but it looks like a fully 3-dimensional image. Therefore, the AdS/CFT correspondence is also known as “holography”. Holography in the sense just explained is not just a theoretical curiosity, but has a plethora of applications: a calculation that is very hard in one formulation can be quite simple in a holographically dual picture. For instance, AdS/CFT allows to map the physics of certain black holes to the physics of strongly coupled field theories, and vice versa. The main goal of this project is to establish and study generalized dualities between non-standard theories of gravity in AdS, like higher derivative theories and/or theories with higher spin, and specific CFTs. Such a correspondence may have applications, e.g., in condensed matter physics to describe strongly coupled systems with quenched disorder by means of a gravity theory dual to a log CFT. Applying the correspondence in the other direction may lead to new insights into 4-dimensional quantum gravity in AdS by studying its dual CFT.
反偏移场/共形场理论(ADS/CFT)的对应预言了维度的数量是一个视角问题:我们可以选择将自然描述为在四个维度遵守一组定律,包括引力,或者等价地,在三个维度遵守一组不同的定律,不包括重力。尽管有截然不同的描述,但我们无法确定这些双重配方中哪一种是“真正”正确的。类似的现象在日常生活中也会发生。全息图是一个2维的物体,但它看起来像一个完全的3维图像。因此,ADS/CFT通信也被称为“全息照相”。刚才解释的意义上的全息术不仅是理论上的好奇,而且有太多的应用:在一个公式中非常困难的计算在全息双重图像中可以非常简单。例如,ADS/CFT允许将某些黑洞的物理映射到强耦合场论的物理,反之亦然。这个项目的主要目标是建立和研究ADS中的非标准引力理论之间的广义对偶,如高阶导数理论和/或具有更高自旋的理论,以及具体的CFT。这样的对应关系可以应用于例如凝聚态物理中,借助于对数CFT的双重引力理论来描述具有猝灭无序的强耦合系统。将对应关系应用到另一个方向,可能会通过研究ADS中的对偶CFT来对ADS中的四维量子引力有新的见解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher spin versus renormalization group equations
高自旋与重整化群方程
- DOI:10.1103/physrevd.90.085003
- 发表时间:2014
- 期刊:
- 影响因子:5
- 作者:I. Sachs
- 通讯作者:I. Sachs
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Olaf Hohm其他文献
Professor Dr. Olaf Hohm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Olaf Hohm', 18)}}的其他基金
String Dualities and Generalized Spacetime
弦对偶性和广义时空
- 批准号:
238344482 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
The underlying symmetries of string theory, notably higher-spin symmetries and Kac-Mood algebras
弦理论的基本对称性,特别是高自旋对称性和 Kac-Mood 代数
- 批准号:
95154062 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Fellowships
相似海外基金
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Dualities in Enumerative Algebraic Geometry
枚举代数几何中的对偶性
- 批准号:
2302117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Dualities in Quantum Field theories and Gravity
量子场论和引力的对偶性
- 批准号:
2894438 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Gauge-gravity dualities and their applications
计量重力二元性及其应用
- 批准号:
2894462 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dualities via ComPactness, Openness, and their Symmetry
通过紧凑性、开放性及其对称性实现的二元性
- 批准号:
EP/Y015029/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Dualities in Enumerative Geometry and Representation Theory
枚举几何与表示论中的对偶性
- 批准号:
2054527 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant