Quantum groups, integrable systems and dualities

量子群、可积系统和对偶性

基本信息

  • 批准号:
    2302661
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This project lies at the intersection of several fields of mathematics: representation theory, classical and quantum integrable systems, mathematical physics, combinatorics, and enumerative algebraic geometry. Representation theory is the study of symmetries of a vector space such as a three-dimensional Euclidean space (or more generally, an infinite dimensional space) endowed with additional important structures. Such symmetries often arise in families encoded by algebraic objects like groups, Lie algebras, or algebras. One important class of algebras that arise in this way is the class of so-called affinized quantum groups. These algebras have been inspiring active research and interactions between mathematics and physics since the 1980s. The main goals of this project are to resolve important questions intrinsic to the affine nature of affinized quantum groups. The project will enhance our understanding of their internal algebraic structures and establish novel connections to the above fields. In addition, the project will have an educational impact through the training and mentoring of students at various levels from high school to graduate school. In more detail, the project will develop new methods in the study of quantum loop groups with applications to geometric representation theory, integrable systems, mathematical physics, and quantum cluster algebras. Building on recent results, the PI will pursue research in five related areas, with specific goals in each. These research areas are unified by the general notion of duality and the use of the "shuffle algebra approach." The rough plan is as follows: 1. Develop key structures of quantum affine and toroidal algebras; 2. Continue the study of quantized Coulomb branches; 3. Continue work on integrable spin chains; 4. Develop a new approach to finite quantum groups and their integral forms that allows for arbitrary roots of unity, as well as a modular theory, thus generalizing and unifying the classical work of DeConcini-Kac-Procesi; and 5. Provide a rigorous mathematical formulation and proof of the BPS/CFT correspondence for A(n)-type quiver gauge theories in string theory, generalizing the known results for the A(1)-quiver.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在几个数学领域的交叉点:表示论,经典和量子可积系统,数学物理,组合学和枚举代数几何。表示论是研究向量空间的对称性,例如三维欧几里得空间(或更一般地说,无限维空间)赋予额外的重要结构。这种对称性经常出现在由代数对象编码的族中,如群、李代数或代数。以这种方式出现的一类重要的代数是所谓的仿射量子群。自20世纪80年代以来,这些代数一直在激发数学和物理之间的积极研究和相互作用。该项目的主要目标是解决仿射量子群的仿射性质所固有的重要问题。该项目将增强我们对它们内部代数结构的理解,并与上述领域建立新的联系。此外,该项目将通过培训和辅导从高中到研究生院的各级学生产生教育影响。更详细地说,该项目将开发量子环群研究的新方法,并将其应用于几何表示理论,可积系统,数学物理和量子簇代数。基于最近的成果,PI将在五个相关领域进行研究,每个领域都有具体目标。这些研究领域是统一的一般概念的对偶性和使用的“洗牌代数方法。“粗略的计划如下:1.发展量子仿射代数和环面代数的关键结构; 2.继续量子化库仑分支的研究; 3.继续研究可积自旋链; 4.发展一种新的方法,以有限量子群及其积分形式,允许任意根的单位,以及一个模块化的理论,从而推广和统一的经典工作DeConcini-Kac-Procesi;和5。为弦理论中的A(n)型规范理论提供严格的数学公式和BPS/CFT对应证明,推广了A(1)-BFT的已知结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleksandr Tsymbaliuk其他文献

Oleksandr Tsymbaliuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleksandr Tsymbaliuk', 18)}}的其他基金

Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2037602
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Coulomb Branches, Shifted Quantum Groups, and their Applications
库仑支、移位量子群及其应用
  • 批准号:
    2001247
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
  • 批准号:
    1821185
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Commutative Subalgebras and Bethe Ansatz for Quantum Affine and Toroidal Algebras via the Shuffle Approach
通过洗牌方法实现量子仿射和环形代数的交换子代数和 Bethe Ansatz
  • 批准号:
    1502497
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Toroidal quantum groups, integrable models and applications
环形量子群、可积模型和应用
  • 批准号:
    DE210101264
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantum Groups, Special Functions, and Integrable Probability
量子群、特殊函数和可积概率
  • 批准号:
    2039183
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Quantum Groups, Special Functions, and Integrable Probability
量子群、特殊函数和可积概率
  • 批准号:
    1701654
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Exotic quantum groups, Lie superalgebras and integrable systems
奇异量子群、李超代数和可积系统
  • 批准号:
    EP/K014412/1
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
  • 批准号:
    20540016
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of quantum groups and quantum integrable systems
量子群和量子可积系统的表示
  • 批准号:
    19540021
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Classical and Quantum Integrable Systems and their discretizations
经典和量子可积系统及其离散化研究
  • 批准号:
    16540182
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum characters of quantum groups and integrable models
量子群的量子特性和可积模型
  • 批准号:
    15540020
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum groups and discrete integrable system
量子群和离散可积系统
  • 批准号:
    15540363
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Riemann-Hilbert problems, theta-functions and quantum groups in integrable models of classical and quantum gravity
经典和量子引力可积模型中的黎曼-希尔伯特问题、theta 函数和量子群
  • 批准号:
    227154-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了