SI2-SSI: Collaborative: The XScala Project: A Community Repository for Model-Driven Design and Tuning of Data-Intensive Applications for Extreme-Scale Accelerator-Based Systems
SI2-SSI:协作:XScala 项目:用于基于超大规模加速器的系统的模型驱动设计和数据密集型应用程序调整的社区存储库
基本信息
- 批准号:1339756
- 负责人:
- 金额:$ 74.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing gap between processor and memory performance -- referred to as the memory wall -- has led high-performance computing vendors to design and incorporate new accelerators into their next-generation systems. Representative accelerators include reconfigurable hardware such as FPGAs, heterogeneous processors such as CPU+GPU processors, highly multicore and multithreaded processors, and manycore co-processors and general-purpose graphics processing units, among others. These accelerators contain myriad innovative architectural features, including explicit control of data motion, large-scale SIMD/vector processing, and multithreaded stream processing. Such features provide abundant opportunities for developers to achieve high-performance for applications that were previously deemed hard to optimize. This project aims to develop tools that will assist developers in using hardware accelerators (co-processors) productively and effectively. This project's specific technical focus is on data-intensive kernels including large dictionary string matching, dynamic programming, graph theory, and sparse matrix computations that arise in the domains of biology, network security, and the social sciences. The project is developing XScala, a software framework for designing efficient accelerator kernels. The framework contains a variety of design time and run-time performance optimization tools. The project concentrates on data-intensive kernels, bound by data movement. It proposes optimization techniques including (a) enhancing and exploiting maximal concurrency to hide data movement; (b) algorithmic reorganization to improve spatial and/or temporal locality; (c) data structure transformations to improve locality or reduce the size of the data (compressed structures); and (d) prefetching, among others. The project is also developing a public software repository and forum, called the XBazaar, for community-developed accelerator kernels. This project includes workshops, tutorials, and the PIs class and summer projects as various means by which to increase community involvement. The broader impacts include productive use of emerging classes of accelerator-augmented computer systems; creation of an open and accessible community repository, the XBazaar, for distributing accelerator-tuned computational kernels, software, and models; training of graduate and undergraduate students; and dissemination through publications, presentations at scientific meetings, lectures, workshops, and tutorials. The framework itself will be released as open-source code and as precompiled binaries for several common platforms, through the XBazaar, as an initial step toward building a community around accelerator kernels.
处理器和内存性能之间的差距越来越大(称为内存墙),导致高性能计算供应商设计并将新的加速器纳入其下一代系统。代表性的促进剂包括&recon#64257;这些处理器可以包括诸如FPGA之类的可计算硬件、诸如CPU+GPU处理器之类的异构处理器、高度多核和多线程处理器、以及众核协处理器和通用图形处理单元等。这些加速器包含无数创新的架构功能,包括数据运动的显式控制,大规模SIMD/向量处理和多线程流处理。这些特性为开发人员提供了大量的机会,使以前被认为难以优化的应用程序实现高性能。该项目旨在开发工具,帮助开发人员高效地使用硬件加速器(协处理器)。该项目的具体技术重点是数据密集型内核,包括生物学,网络安全和社会科学领域中出现的大型字典字符串匹配,动态编程,图论和稀疏矩阵计算。该项目正在开发XScala,这是一个用于设计高效加速器内核的软件框架。该框架包含各种设计时和运行时性能优化工具。该项目专注于数据密集型内核,由数据移动绑定。它提出了优化技术,包括(a)增强和利用最大并发性来隐藏数据移动;(B)算法重组来提高空间和/或时间局部性;(c)数据结构变换来提高局部性或减小数据的大小(压缩结构);以及(d)预取等。该项目还为社区开发的加速器内核开发了一个公共软件库和论坛,称为XBazaar。该项目包括研讨会,教程,以及PI类和暑期项目,通过这些方式来增加社区参与。更广泛的影响包括生产性地使用加速器增强计算机系统的新兴类别;创建一个开放和可访问的社区存储库,XBazaar,用于分发加速器调整的计算内核,软件和模型;培训研究生和本科生;并通过出版物,科学会议,讲座,研讨会和教程中的演示进行传播。该框架本身将通过XBazaar作为开源代码和几个常见平台的预编译二进制文件发布,作为围绕加速器内核构建社区的第一步。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FASTCF: FPGA-based Accelerator for STochastic-Gradient-Descent-based Collaborative Filtering
- DOI:10.1145/3174243.3174252
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Shijie Zhou;R. Kannan;Yu Min;V. Prasanna
- 通讯作者:Shijie Zhou;R. Kannan;Yu Min;V. Prasanna
An FPGA framework for edge-centric graph processing
- DOI:10.1145/3203217.3203233
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Shijie Zhou;R. Kannan;Hanqing Zeng;V. Prasanna
- 通讯作者:Shijie Zhou;R. Kannan;Hanqing Zeng;V. Prasanna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viktor Prasanna其他文献
Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna - 通讯作者:
Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
- DOI:
10.1145/3649153.3649193 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Michael Kinsner;Deshanand Singh;Mahesh Iyer;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi-Chien Lin;Bingyi Zhang;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Guest Editorial: Computing Frontiers
- DOI:
10.1007/s10766-013-0240-2 - 发表时间:
2013-01-31 - 期刊:
- 影响因子:0.900
- 作者:
Calin Cascaval;Pedro Trancoso;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Viktor Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viktor Prasanna', 18)}}的其他基金
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 74.89万 - 项目类别:
Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
- 批准号:
2104264 - 财政年份:2021
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
- 批准号:
2119816 - 财政年份:2021
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
- 批准号:
2027007 - 财政年份:2020
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
- 批准号:
2009057 - 财政年份:2020
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
- 批准号:
1912680 - 财政年份:2019
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
- 批准号:
1643351 - 财政年份:2016
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
相似国自然基金
考虑SSI效应的导管架式海洋平台抗震性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑SSI的层间隔震高层建筑结构在三维地震下的响应研究
- 批准号:52168072
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
考虑SSI效应的大型储罐动力学特性及其隔板减晃研究
- 批准号:51978336
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
考虑SSI效应的摇摆墙-框架结构抗震机理及性能评估方法研究
- 批准号:51978524
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
考虑能量需求和SSI效应的RC梁式桥基于性能的抗震设计方法
- 批准号:50908014
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2039142 - 财政年份:2020
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
2114580 - 财政年份:2020
- 资助金额:
$ 74.89万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2001752 - 财政年份:2019
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
1664022 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664061 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
- 批准号:
1836797 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Open Source Support for Massively Parallel, Generic Finite Element Methods
合作研究:SI2-SSI:对大规模并行、通用有限元方法的开源支持
- 批准号:
1741870 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Modules for Experiments in Stellar Astrophysics
合作研究:SI2-SSI:恒星天体物理实验模块
- 批准号:
1663684 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Inquiry-Focused Volumetric Data Analysis Across Scientific Domains: Sustaining and Expanding the yt Community
合作研究:SI2-SSI:跨科学领域以调查为中心的体积数据分析:维持和扩展 yt 社区
- 批准号:
1663893 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664018 - 财政年份:2017
- 资助金额:
$ 74.89万 - 项目类别:
Standard Grant