Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
基本信息
- 批准号:2119816
- 负责人:
- 金额:$ 12.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In grand-challenge scientific applications, the enormous amount of data produced by the sensing and instrumentation infrastructure often loses its value after a small window of time. Thus, to obtain actionable intelligence from the data, streaming analytics, i.e., the ability to analyze in-motion data, is increasingly becoming critical. Moreover, modern computing systems are highly heterogeneous, consisting of processors, accelerators, and large high-bandwidth external memories. To develop scalable streaming analytics applications, challenges across the full system stack -- from application to target platform -- need to be addressed. In this regard, this planning project is identifying a comprehensive set of research challenges, goals, key innovations and timelines in algorithms and applications, systems software, hardware-software co-design, and computer architecture. This project is bringing together a community of application developers and users, computer scientists, and data scientists, whose interests lie in building streaming data science applications targeting a wide variety of scalable systems. This project is demonstrating preliminary results on how it will achieve significant cross-stack performance improvements using Privacy Preserving Streaming Graph Learning for Secure Smart Grids as the driving application.Modern data-science applications are characterized as being highly decentralized, distributed and requiring composition and orchestration between localized analytics on thousands or millions of edge platforms and massive centralized analytics in cloud/data centers, as well as requiring real-time analytics on streaming data. To enable scalable performance of grand-challenge streaming data-science applications, a framework that allows developers to seamlessly build these applications targeting a wide variety of scalable systems is needed. This planning project is conducting preliminary research towards a large proposal for developing an opensource framework, StreamWare, that will enable users to develop streaming data-science applications. This project is establishing a community of application developers and users, computer scientists, and data scientists who would serve as early adopters and developers of the StreamWare framework. In consultation with domain experts, a list of key data-science kernels for StreamWare is being generated, and their existing state-of-the-art algorithms and hardware IPs are being evaluated to identify performance limitations and opportunities for improvement. This project is also articulating the requirements of novel abstractions that can represent and operate on streaming data on heterogeneous platforms. This project uses Privacy Preserving Streaming Graph Learning for Secure Smart Grids as a motivating application to show preliminary evidence of end-to-end scalability using a novel notion of symbiotic scalability that captures the impact of StreamWare's cross-layer optimizations. The expected outcomes of this planning project include a proposal for the research activities to be carried out in the large grant, publications on the results of the survey activities and future research directions for enabling streaming data science, and curricula for future graduate and undergraduate courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在具有重大挑战的科学应用中,传感和仪器基础设施产生的大量数据往往在一小段时间后就失去了价值。因此,为了从数据中获得可操作的情报,流分析,即,分析动态数据的能力变得越来越重要。此外,现代计算系统是高度异构的,由处理器、加速器和大型高带宽外部存储器组成。为了开发可扩展的流分析应用程序,需要解决整个系统堆栈(从应用程序到目标平台)的挑战。在这方面,该规划项目正在确定一套全面的研究挑战,目标,关键创新和时间表的算法和应用程序,系统软件,硬件软件协同设计和计算机体系结构。该项目汇集了应用程序开发人员和用户,计算机科学家和数据科学家,他们的兴趣在于构建针对各种可扩展系统的流数据科学应用程序。该项目展示了如何使用用于安全智能电网的隐私保护流图学习作为驱动应用程序来实现显著的跨堆栈性能改进的初步结果。现代数据科学应用的特点是高度分散、分布式,需要在数千或数百万个边缘平台上的本地化分析与云/数据中心的大规模集中式分析之间进行组合和编排,以及需要对流数据进行实时分析。为了实现具有巨大挑战性的流数据科学应用程序的可扩展性能,需要一个框架,允许开发人员无缝地构建针对各种可扩展系统的应用程序。该规划项目正在进行初步研究,以制定一个大型的开源框架StreamWare,使用户能够开发流数据科学应用程序。该项目正在建立一个由应用程序开发人员和用户、计算机科学家和数据科学家组成的社区,他们将成为StreamWare框架的早期采用者和开发者。在与领域专家协商后,正在生成StreamWare的关键数据科学内核列表,并正在评估其现有的最先进算法和硬件IP,以确定性能限制和改进机会。该项目还阐明了可以在异构平台上表示和操作流数据的新颖抽象的需求。该项目使用隐私保护流图学习安全智能电网作为激励应用程序显示端到端的可扩展性的初步证据,使用一种新的共生可扩展性的概念,捕捉StreamWare的跨层优化的影响。该规划项目的预期成果包括在大额赠款中开展的研究活动的建议,关于调查活动结果的出版物以及支持流数据科学的未来研究方向,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Input Feature Pruning for Accelerating GNN Inference on Heterogeneous Platforms
- DOI:10.1109/hipc56025.2022.00045
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Jason Yik;S. Kuppannagari;Hanqing Zeng;V. Prasanna
- 通讯作者:Jason Yik;S. Kuppannagari;Hanqing Zeng;V. Prasanna
SHARP: Software Hint-Assisted Memory Access Prediction for Graph Analytics
- DOI:10.1109/hpec55821.2022.9926307
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Pengmiao Zhang;R. Kannan;Xiangzhi Tong;Anant V. Nori;V. Prasanna
- 通讯作者:Pengmiao Zhang;R. Kannan;Xiangzhi Tong;Anant V. Nori;V. Prasanna
ReSemble: reinforced ensemble framework for data prefetching
ReSemble:用于数据预取的增强型集成框架
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Pengmiao;Kannan, Rajgopal;Srivastava, Ajitesh;Nori, Anant V.;Prasanna, Viktor K.
- 通讯作者:Prasanna, Viktor K.
Estimating the Impact of Communication Schemes for Distributed Graph Processing
估计通信方案对分布式图处理的影响
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ye Tian;Kuppannagari, Sanmukh;Rose, Cesar Augusto;Wijeratne, Sasindu;Kannan, Rajgopal;Prasanna, Viktor K.
- 通讯作者:Prasanna, Viktor K.
Towards Programmable Memory Controller for Tensor Decomposition
用于张量分解的可编程内存控制器
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wijeratne, Sasindu;Wang, Ta-Yang;Kannan, Rajgopal;Prasanna Viktor
- 通讯作者:Prasanna Viktor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viktor Prasanna其他文献
Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna - 通讯作者:
Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
- DOI:
10.1145/3649153.3649193 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Michael Kinsner;Deshanand Singh;Mahesh Iyer;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi-Chien Lin;Bingyi Zhang;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Guest Editorial: Computing Frontiers
- DOI:
10.1007/s10766-013-0240-2 - 发表时间:
2013-01-31 - 期刊:
- 影响因子:0.900
- 作者:
Calin Cascaval;Pedro Trancoso;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Viktor Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viktor Prasanna', 18)}}的其他基金
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
- 批准号:
2104264 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
- 批准号:
2027007 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
- 批准号:
2009057 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
- 批准号:
1912680 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
- 批准号:
1643351 - 财政年份:2016
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
- 批准号:
1637372 - 财政年份:2016
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant