BRIGE: Minimum-Energy Bio-Inspired Analogic Computing Devices with Stochastic Switching Transistors under Ultra-Low VDD

BRIGE:超低 VDD 下具有随机开关晶体管的最低能耗仿生模拟计算设备

基本信息

项目摘要

ECCS-1342225Lin, MingjieUniversity of Central FloridaBRIGE: Minimum-Energy Bio-Inspired AnaLogic Computing Devices with Stochastic Switching Transistors under Ultra-Low VDDABSTRACTIntellectual Merit: This BRIGE project aims at achieving robust ultra-low power computation by exploiting the stochastic switching behavior observed within a CMOS digital circuit that is driven by an ultra-low supply voltage approaching the digital switching limit. This objective is motivated by two observations. First, probabilistic inference and stochastic learning are fundamental in sensor data processing. Second, emerging devices will exhibit sophisticated physical property that may natively compute probabilistic algorithms. This proposed effort will first model and analyze the stochastic switching behavior in minimum-energy CMOS transistors under ultra-low VDD (¡Ö 50mV) both analytically and experimentally. Subsequently, it will develop a field-theoretic methodology to optimize a large-scale logic circuit built with such stochastic switching devices in order to improve its robustness. Finally, it will exploit the stochastic switching behavior natively to design and implement AnaLogic circuits (between analog and logic circuits) that emulate a robust self-motion algorithm inspired by fly eye based on optical flow extraction.Broader Impacts: Leveraging the physics of field-effect devices to perform computational tasks, this proposed research could potentially inspire a totally unconventional design paradigm for emerging nanoscale device technology with severe device variability and switching uncertainty. Furthermore, the proposed field-theoretic approach offers a rich mathematical structure, therefore can broaden the current digital circuit design theory. Finally, the proposed methodology can enable more accurate understanding of existing logic circuit design methods, especially on their limitations when directly applied to future device technologies driven by ultra-low VDD. Besides disseminating its research findings through new curricula and hardware-based stochastic logic circuit emulations, this project will approach the challenge of broadening the engineering participation from underrepresented minority groups in both bottom-up (public STEM education) and top-down (PhD students recruiting) directions. The PI will create mentoring and outreach programs specifically designed to attract female, African-American, Latino, and first-generation college students to join his group, thus preparing a new diverse work force for the computing industry. Additionally, the Orlando Science Center will be used as the main platform to stimulate public interests in STEM education of computing. The success of this educational effort, through innovative exhibits and engaging mini-lectures, will be judged by the PhD enrollment of computer engineering from underrepresented groups at UCF and the size of public audience to its collaborative exhibit efforts with the Orlando Science Center.
ECCS-1342225 Lin,MingjieUniversity of Central FloridaBRIGE:具有超低VDD下随机开关晶体管的最小能量生物启发AnaLogic计算设备摘要智力优势:该BRIGE项目旨在通过利用在CMOS数字电路中观察到的随机开关行为来实现鲁棒的超低功耗计算,该CMOS数字电路由接近数字开关极限的超低电源电压驱动。这一目标是由两个观察所促成的。首先,概率推理和随机学习是传感器数据处理的基础。第二,新兴设备将展现出复杂的物理特性,可以原生地计算概率算法。本文首先对最小能量CMOS晶体管在超低VDD(~ 50 mV)下的随机开关行为进行了理论和实验分析。随后,它将开发一个场论的方法来优化一个大规模的逻辑电路,建立这样的随机开关器件,以提高其鲁棒性。最后,本论文将利用随机开关行为来设计和实现AnaLogic电路(介于模拟电路和逻辑电路之间),仿真基于光流提取的蝇眼启发的强大自运动算法。利用场效应器件的物理特性来执行计算任务,这项研究可能会激发出一种全新的非传统设计范式,用于具有严重器件可变性和开关的新兴纳米器件技术。不确定性此外,所提出的场论方法提供了一个丰富的数学结构,因此可以拓宽目前的数字电路设计理论。最后,所提出的方法可以更准确地理解现有的逻辑电路设计方法,特别是在直接应用于未来的器件技术时,由超低VDD驱动的限制。除了通过新课程和基于硬件的随机逻辑电路仿真传播其研究成果外,该项目还将在自下而上(公共STEM教育)和自上而下(博士生招聘)方向上扩大代表性不足的少数群体的工程参与。PI将创建指导和推广计划,专门用于吸引女性,非洲裔美国人,拉丁美洲人和第一代大学生加入他的团队,从而为计算机行业准备新的多元化劳动力。此外,奥兰多科学中心将被用作激发公众对STEM计算教育兴趣的主要平台。这一教育工作的成功,通过创新的展览和吸引人的小型讲座,将通过UCF代表性不足的群体的计算机工程博士入学人数和公众观众的规模来判断其与奥兰多科学中心的合作展览工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingjie Lin其他文献

Stochastic-Based Deep Convolutional Networks with Reconfigurable Logic Fabric
具有可重构逻辑结构的基于随机的深度卷积网络
Stochastic-Based Spin-Programmable Gate Array with Emerging MTJ Device Technology
采用新兴 MTJ 器件技术的基于随机的自旋可编程门阵列
Is Epicardial Adipose Tissue Associated with Atrial Fibrillation Following Cardiac Surgery? A Systematic Review and Meta-Analysis
  • DOI:
    10.1532/hsf.3975
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Rina Sha;Wenqiang Han;Mingjie Lin;Jingquan Zhong
  • 通讯作者:
    Jingquan Zhong
Stochastically computing discrete Fourier transform with reconfigurable digital fabric
使用可重构数字结构随机计算离散傅里叶变换
Hardware-Efficient Template-Based Deep CNNs Accelerator Design
基于硬件高效模板的深度 CNN 加速器设计

Mingjie Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingjie Lin', 18)}}的其他基金

SHF: Small: Graph-X: Exploiting Hidden Parallelism of Irregular and Non-Stencil Computation in High-Level Synthesis
SHF:小:Graph-X:在高级综合中利用不规则和非模板计算的隐藏并行性
  • 批准号:
    1908177
  • 财政年份:
    2019
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Standard Grant
CAREER: iMPACT: Metaphysical and Probabilistic-Based Computing Transformation with Emerging Spin-Transfer Torque Device Technology
职业:iMPACT:利用新兴的自旋转移扭矩器件技术进行形而上学和基于概率的计算转型
  • 批准号:
    1553056
  • 财政年份:
    2016
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Continuing Grant
SHF: Small: Bio-Inspired Logic Design with Graph and Field Theory
SHF:小:利用图和场论进行仿生逻辑设计
  • 批准号:
    1319884
  • 财政年份:
    2013
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Standard Grant

相似海外基金

Non-Minimum Energy Pathways in the Dissociation of Energy-Selected Ions
能量选择离子解离中的非最小能量途径
  • 批准号:
    2154652
  • 财政年份:
    2022
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Continuing Grant
Batch Reverse Osmosis (RO): Desalination with minimum wastage of energy and water
批量反渗透 (RO):以最少的能源和水浪费进行海水淡化
  • 批准号:
    EP/T025867/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Research Grant
Effects of Fuel Composition on Initial Flame Kernel Growth and Minimum Ignition Energy
燃料成分对初始火焰核生长和最小点火能量的影响
  • 批准号:
    20K04327
  • 财政年份:
    2020
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of minimum strain energy surfaces by eigenvalue control on equilibrium matrix
通过平衡矩阵特征值控制识别最小应变能面
  • 批准号:
    19K04696
  • 财政年份:
    2019
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Symmetry-Based Approach to Minimum Energy Pathways
基于对称性的最小能量路径方法
  • 批准号:
    1807768
  • 财政年份:
    2018
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Standard Grant
Development of a Real-Time Voltage Scaling System Enabling Minimum Energy Point Operation of Processors
开发实时电压调节系统,实现处理器的最小能量点运行
  • 批准号:
    19K21531
  • 财政年份:
    2018
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of simple estimation model for minimum ignitiion energy of flowing flammable gas based on quenching distance
基于熄火距离的流动可燃气体最小点火能简易估算模型的建立
  • 批准号:
    18K04641
  • 财政年份:
    2018
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LSI Design Method for Minimum Energy Operation
最低能量运行的LSI设计方法
  • 批准号:
    16H01713
  • 财政年份:
    2016
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
GOALI: Next-Generation Energy-Efficient Minimum Quantity Lubrication Deep Hole Drilling
GOALI:下一代节能微量润滑深孔钻削
  • 批准号:
    1327316
  • 财政年份:
    2014
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Standard Grant
Comprehensive research on minimum energy structures by design theory
设计理论对最小能量结构的综合研究
  • 批准号:
    26800082
  • 财政年份:
    2014
  • 资助金额:
    $ 14.84万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了