Workshop on Dimension Reduction and High-dimensional Inference: Theory and Applications

降维与高维推理研讨会:理论与应用

基本信息

  • 批准号:
    1342467
  • 负责人:
  • 金额:
    $ 0.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

The workshop on "Dimension Reduction and High-Dimensional Inference: Theory and Applications" will be held on January 17-18, 2014, on the campus of the University of Florida, Gainesville, FL, USA. The project will provide travel support for 25 young researchers and two invited speakers. The field of dimension reduction has a long history, but the overarching aim is to reduce the dimension of a family of multivariate random vectors in such a way that the information deemed relevant is preserved. Today, with high-throughput technologies and fast computing, high dimensionality in data is pervasive. Dimension reduction is now a prevalent theme throughout the applied sciences, including genetics, food science, biomedical engineering, economics and computer science. The area of dimension reduction is quickly evolving and expanding to adapt to this new reality. In this workshop, twelve distinguished individuals who work in dimension reduction and high-dimensional inference will review the current state of the field and present their recent work. A number of young researchers will participate in the workshop and present their work in poster sessions.Dimension reduction offers an appealing avenue for dealing with high dimensional problems. In effect it transforms a high dimensional data set to a low dimensional one by identifying and combining a small set of important variables which give as much or nearly as much information as the original large set of variables. Then one can build models and perform estimation or prediction based on the low dimensional data set. Many existing models and approaches, which do not apply to high dimensional data, can be applied to the reduced low dimensional data. In addition, effective reduction in dimension often makes it possible to visualize the data, which can facilitate subsequent model development. Dimension reduction is now an active research area, but many unsolved problems remain. The workshop provides an excellent opportunity for established researchers in the field, as well newcomers, to discuss the significant developments that have taken place recently; to discuss what works and what does not; and to identify important problems and new research directions.
“降维与高维推理:理论与应用”研讨会将于2014年1月17日至18日在美国佛罗里达州盖恩斯维尔市佛罗里达大学校园举行。该项目将为25名年轻研究人员和两名受邀演讲者提供旅行支持。降维领域有着悠久的历史,但总体目标是降低多变量随机向量族的维数,从而保留被认为相关的信息。如今,随着高吞吐量技术和快速计算的发展,数据的高维性无处不在。降维现在是整个应用科学的一个流行主题,包括遗传学、食品科学、生物医学工程、经济学和计算机科学。降维领域正在迅速发展和扩展,以适应这一新的现实。在本次研讨会中,十二位在降维和高维推理领域工作的杰出人士将回顾该领域的现状并介绍他们最近的工作。一些年轻的研究人员将参加研讨会,并在海报会议上展示他们的工作。降维为处理高维问题提供了一个有吸引力的途径。实际上,它通过识别和组合一小组重要变量,将高维数据集转换为低维数据集,这些重要变量提供与原始大变量集相同或几乎相同的信息。然后可以建立模型,并基于低维数据集进行估计或预测。现有的许多不能应用于高维数据的模型和方法可以应用于降维后的低维数据。此外,有效的降维通常可以使数据可视化,这可以促进后续的模型开发。降维目前是一个活跃的研究领域,但仍有许多未解决的问题。研讨会为该领域的知名研究人员以及新来者提供了一个极好的机会,讨论最近发生的重大发展;讨论什么可行,什么不可行;并找出重要的问题和新的研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhihua Su其他文献

A Comprehensive Bayesian Framework for Envelope Models
包络模型的综合贝叶斯框架
Envelopes for elliptical multivariate linear regression
椭圆多元线性回归的包络线
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Forzani;Zhihua Su
  • 通讯作者:
    Zhihua Su
Paleosecular variations refining the chronology of the sediments from the Pearl River Delta, southern China
古时代变化完善了中国南部珠江三角洲沉积物的年代学
  • DOI:
    10.1177/0959683612467480
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoqiang Yang;Jie Yang;Zhihua Su;Wenya Huang;Jiahua Wang
  • 通讯作者:
    Jiahua Wang
Predictive models built upon annotated and validated intake biomarkers in urine using paired or unpaired analysis helped to classify cranberry juice consumers in a randomized, double-blinded, placebo-controlled, and crossover study.
使用配对或不配对分析,基于尿液中经过注释和验证的摄入生物标志物构建的预测模型有助于在随机、双盲、安慰剂对照和交叉研究中对酸果蔓汁消费者进行分类。
  • DOI:
    10.1016/j.nutres.2022.12.002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Shaomin Zhao;Zhihua Su;Haiyan Liu;C. Khoo;T. Garrett;Liwei Gu
  • 通讯作者:
    Liwei Gu
Envelope Model for Function-on-Function Linear Regression
函数线性回归的包络模型

Zhihua Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhihua Su', 18)}}的其他基金

New Directions in Envelope Models and Methods with Applications to Public Health and Medical Science
包络模型和方法在公共卫生和医学科学中的应用的新方向
  • 批准号:
    1407460
  • 财政年份:
    2014
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Continuing Grant

相似海外基金

Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
  • 批准号:
    22K03874
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
  • 批准号:
    RGPIN-2021-04073
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
  • 批准号:
    2152774
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
  • 批准号:
    RGPIN-2021-02475
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Discovery Grants Program - Individual
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
  • 批准号:
    2210775
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2147546
  • 财政年份:
    2022
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Continuing Grant
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
  • 批准号:
    2052109
  • 财政年份:
    2021
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10196077
  • 财政年份:
    2021
  • 资助金额:
    $ 0.75万
  • 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
  • 批准号:
    10366073
  • 财政年份:
    2021
  • 资助金额:
    $ 0.75万
  • 项目类别:
CIF:Small: Theory and Methods for Simultaneous Feature Auto-grouping and Dimension Reduction in Supervised Multivariate Learning
CIF:Small:监督多元学习中同时特征自动分组和降维的理论和方法
  • 批准号:
    2105818
  • 财政年份:
    2021
  • 资助金额:
    $ 0.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了