New Directions in Envelope Models and Methods with Applications to Public Health and Medical Science

包络模型和方法在公共卫生和医学科学中的应用的新方向

基本信息

  • 批准号:
    1407460
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Multivariate linear regression (MLR) is an approach to understand relationships between predictors and responses, and it is broadly applied for estimation or prediction in many disciplines. With the development of modern technology, it is possible to measure more and more characteristics and potential factors for a subject, resulting in very large data sets in many contemporary problems. In such situations, MLR is inefficient because it fails to distinguish between information that is useful to the scientific goal and a likely overabundance of irrelevant information that can obscure the useful information. The envelope model is a new area in statistics. By identifying the irrelevant information, the envelope analysis is based on the useful information only and is therefore more efficient. In this project, new directions will be explored to broaden the applicability of the envelope models, especially the applicability in public health and medical sciences. Students involved in the project will have opportunities to interact with faculty from other disciplines, and gain crucial experience on how to operate across traditional disciplinary boundaries. Software will be developed to make the new methodologies available to the statistical community. This project will develop new models that enrich the area of envelopes, making the envelope method more flexible and adaptive to more practical problems. For example, prior information is often available from medical history, past experience and other sources, the Bayesian envelope model will enable investigators to incorporate prior information in the analysis. As medical studies often involve missing data, envelope models that handle missing data will be studied. While most existing variable selection methods are applied to the predictors, sparse envelope model focuses on identifying inactive individual responses, leading to more efficient and interpretable results. The project connects the envelope model with several branches in statistics, including Bayesian analysis, Markov chain Monte Carlo, variable selection and covariance estimation, which will generate new theory, methods and algorithms in the area of envelope models.
多元线性回归(Multivariate Linear Regression,MLR)是一种理解预测因子和响应之间关系的方法,广泛应用于许多学科的估计或预测。 随着现代科学技术的发展,人们可以测量越来越多的特征和潜在因素,导致当代许多问题的数据集非常庞大。 在这种情况下,MLR是低效的,因为它无法区分对科学目标有用的信息和可能过多的不相关信息,这些信息可能会掩盖有用的信息。包络模型是统计学中的一个新领域。 通过识别无关信息,包络分析仅基于有用信息,因此更有效。 本项目将探索新的方向,以扩大包络模型的适用性,特别是在公共卫生和医学科学中的适用性。参与该项目的学生将有机会与其他学科的教师互动,并获得如何跨越传统学科界限的重要经验。 将开发软件,向统计界提供新的方法。 该项目将开发新的模型,丰富包络的面积,使包络方法更灵活,适应更实际的问题。 例如,先验信息通常可以从病史、过去的经验和其他来源获得,贝叶斯包络模型将使研究人员能够在分析中纳入先验信息。由于医学研究经常涉及缺失数据,因此将研究处理缺失数据的包络模型。 虽然大多数现有的变量选择方法都适用于预测因子,稀疏包络模型侧重于识别不活跃的个体反应,导致更有效和可解释的结果。 该项目将包络模型与贝叶斯分析、马尔可夫链蒙特卡罗、变量选择和协方差估计等统计学分支联系起来,将在包络模型领域产生新的理论、方法和算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhihua Su其他文献

A Comprehensive Bayesian Framework for Envelope Models
包络模型的综合贝叶斯框架
Envelopes for elliptical multivariate linear regression
椭圆多元线性回归的包络线
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Forzani;Zhihua Su
  • 通讯作者:
    Zhihua Su
Paleosecular variations refining the chronology of the sediments from the Pearl River Delta, southern China
古时代变化完善了中国南部珠江三角洲沉积物的年代学
  • DOI:
    10.1177/0959683612467480
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoqiang Yang;Jie Yang;Zhihua Su;Wenya Huang;Jiahua Wang
  • 通讯作者:
    Jiahua Wang
Predictive models built upon annotated and validated intake biomarkers in urine using paired or unpaired analysis helped to classify cranberry juice consumers in a randomized, double-blinded, placebo-controlled, and crossover study.
使用配对或不配对分析,基于尿液中经过注释和验证的摄入生物标志物构建的预测模型有助于在随机、双盲、安慰剂对照和交叉研究中对酸果蔓汁消费者进行分类。
  • DOI:
    10.1016/j.nutres.2022.12.002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Shaomin Zhao;Zhihua Su;Haiyan Liu;C. Khoo;T. Garrett;Liwei Gu
  • 通讯作者:
    Liwei Gu
Envelope Model for Function-on-Function Linear Regression
函数线性回归的包络模型

Zhihua Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhihua Su', 18)}}的其他基金

Workshop on Dimension Reduction and High-dimensional Inference: Theory and Applications
降维与高维推理研讨会:理论与应用
  • 批准号:
    1342467
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了