INSPIRE Track 1: Human reasoning and learning in a complex but tractable decision-making paradigm

INSPIRE Track 1:复杂但易于处理的决策范式中的人类推理和学习

基本信息

  • 批准号:
    1344256
  • 负责人:
  • 金额:
    $ 79.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

This INSPIRE award is partially funded by the Robust Intelligence Program in the Division of Information and Intelligent Systems in the Directorate for Computer and Information Science and Engineering and the Perception, Action, and Cognition Program in the Division of Behavioral and Cognitive Sciences in the Directorate for Social, Behavioral, and Economic Sciences.This project studies a hallmark of human intelligence, namely the ability to think ahead. Anticipating the consequences of one's own actions and those of others is of crucial importance in areas as diverse as business negotiations, military strategy, and teaching. In each of these domains, the quality of one's decisions depends on the quality of one's mental simulations of event sequences, which might be limited by cognitive capacity limitations, one's grasp of the complexities of the decision space, or both. The project's goal is to identify the factors that affect people's performance in thinking ahead, and investigate to what extent this performance can be improved through training. The project ties into the study of heuristics (general rules used by decision-makers) in psychology and behavioral economics.Thinking ahead is difficult to measure and model in real-world problems. Therefore, the investigator has developed a two-person strategic decision-making task as a controllable experimental environment. Participants take turns to put tokens on a 4x11 board and try to get four of their own tokens in a row. The rules are unfamiliar to subjects, yet easy to learn. The size of the state space for this task is of the order of 10^20, much smaller than that of chess (~10^47), yet of appreciable complexity and much too large for humans to easily grasp. The investigators have "weakly solved" this task using an improved version of alpha-beta pruning. It can most likely also be solved strongly, which means that one can determine in any given position whether any given decision is an error. Human data will be collected in three task modes: one in which the subject is given a position and has to win in a set number of moves; human versus computer; and human versus human. The investigators will track subjects' eye movements, which could reveal aspects of planning and perhaps even serve to visualize the process of mental simulation. An important component of the project will be computational modeling of the data. Humans cannot think ahead to the end of the task, so we hypothesize that they use simple features of positions (heuristics) to value certain moves over others. Examples of features could be the presence of a three-in-a-row, or of an adjacent, open-ended two-in-a-row. Preliminary human data suggest "strategic blind spots" created by the application of the incorrect heuristics. The investigators aim to predict the probability that a subject will in a given position make a particular move, based on features of the position that would be created by that move, as well as the subject's limited depth of reasoning. The resulting model will allow to quantitatively address the question of whether learning mostly serves to increase one's depth of reasoning or to refine one's palette of heuristics. The behavioral and eye movement data will lay the foundation for studies of the neural substrates of reasoning in complex decision-making contexts.The project is positioned at the intersection of computer science, cognitive psychology, management and decision science, and education, and has the potential to contribute to each of these fields. In the long run, the project might be able to contribute to understanding and perhaps avoiding failures to think "out of the box" in real-life problem-solving. Moreover, strategic tasks like the one used in this project could serve as a mini-environment for testing hypotheses about teaching methods.
INSPIRE奖部分由计算机和信息科学与工程局信息和智能系统部的鲁棒智能计划以及社会、行为和经济科学局行为和认知科学部的感知、行动和认知计划资助。该项目研究人类智能的一个标志,即提前思考的能力。在商业谈判、军事战略和教学等不同领域,预测自己和他人行为的后果至关重要。在每一个领域中,决策的质量取决于一个人对事件序列的心理模拟的质量,这可能受到认知能力限制的限制,一个人对决策空间复杂性的把握,或者两者兼而有之。该项目的目标是确定影响人们提前思考表现的因素,并调查通过培训可以在多大程度上提高这种表现。该项目结合了心理学和行为经济学中的决策者使用的一般规则的研究。提前思考很难在现实世界的问题中进行衡量和建模。因此,研究者开发了一个两人的战略决策任务作为可控的实验环境。参与者轮流将代币放在4x 11的板上,并尝试连续获得四个自己的代币。这些规则对受试者来说很陌生,但很容易学习。这个任务的状态空间大小约为10^20,比国际象棋的状态空间小得多(约10^47),但复杂性相当可观,而且对于人类来说太大了,很难掌握。研究人员使用改进版的alpha-beta修剪“弱解决”了这个任务。它也很可能被强解,这意味着人们可以在任何给定的位置确定任何给定的决策是否是错误的。人类数据将以三种任务模式收集:一种是给受试者一个位置,必须在一定数量的移动中获胜;人类对计算机;人类对人类。研究人员将跟踪受试者的眼球运动,这可能会揭示计划的各个方面,甚至可能有助于可视化心理模拟的过程。该项目的一个重要组成部分将是数据的计算建模。人类无法提前思考到任务结束,所以我们假设他们使用简单的位置特征(位置)来评估某些动作。特征的示例可以是存在三排或相邻的开放式两排。初步的人类数据表明,由于应用了不正确的地理学,造成了“战略盲点”。研究人员的目标是预测一个给定位置的受试者会做出特定动作的概率,基于该动作所产生的位置特征,以及受试者有限的推理深度。由此产生的模型将允许定量地解决学习是否主要用于增加一个人的推理深度或改进一个人的调色板的问题。行为和眼动数据将为复杂决策环境中推理的神经基础研究奠定基础。该项目定位于计算机科学、认知心理学、管理和决策科学以及教育的交叉点,并有可能为这些领域做出贡献。从长远来看,该项目可能有助于理解,并可能避免在现实生活中解决问题时“跳出框框”思考的失败。此外,像这个项目中使用的战略任务可以作为一个微型环境,用于测试有关教学方法的假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Ji Ma其他文献

Limitations of proposed signatures of Bayesian confidence
贝叶斯置信度提议签名的局限性
  • DOI:
    10.1101/218222
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William T. Adler;Wei Ji Ma
  • 通讯作者:
    Wei Ji Ma
Distinct Developmental Trajectories In The Cognitive Components Of Complex Planning
复杂规划的认知成分中的独特发展轨迹
Representation and computation in visual working memory
视觉工作记忆中的表征与计算
  • DOI:
    10.1038/s41562-024-01871-2
  • 发表时间:
    2024-06-07
  • 期刊:
  • 影响因子:
    15.900
  • 作者:
    Paul M. Bays;Sebastian Schneegans;Wei Ji Ma;Timothy F. Brady
  • 通讯作者:
    Timothy F. Brady
A computational approach to the N-back task
N 回溯任务的一种计算方法
  • DOI:
    10.1038/s41598-024-80537-5
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Long Ni;Wei Ji Ma
  • 通讯作者:
    Wei Ji Ma
Erratum to: Technology consumption and cognitive control: Contrasting action video game experience with media multitasking
  • DOI:
    10.3758/s13414-015-1014-2
  • 发表时间:
    2015-11-03
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Pedro Cardoso-Leite;Rachel Kludt;Gianluca Vignola;Wei Ji Ma;C. Shawn Green;Daphne Bavelier
  • 通讯作者:
    Daphne Bavelier

Wei Ji Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Ji Ma', 18)}}的其他基金

RI: SMALL: Prospective and retrospective mechanisms in complex planning by humans
RI:小:人类复杂规划中的前瞻性和回顾性机制
  • 批准号:
    2008331
  • 财政年份:
    2020
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
  • 批准号:
    2344385
  • 财政年份:
    2024
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
  • 批准号:
    2246299
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
RII Track-1: Building Capacity across Iowa to Meet Human Needs from Things that Grow
RII Track-1:在爱荷华州进行能力建设,以满足人类对生长物的需求
  • 批准号:
    2242763
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Cooperative Agreement
RII Track-4: NSF:Assessing Dynamic Connectivity of Streams and Wetlands across Spatial and Human Gradients with Deep Learning
RII Track-4:NSF:利用深度学习评估跨空间和人类梯度的溪流和湿地的动态连通性
  • 批准号:
    2229616
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
  • 批准号:
    2246298
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Designing Safe and Robust Human-machine Interactions with Fuzzy Mental Models
合作研究:FMitF:第一轨:利用模糊心理模型设计安全、鲁棒的人机交互
  • 批准号:
    2319318
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track H: An Inclusive, Human-Centered, and Convergent Framework for Transforming Voice AI Accessibility for People Who Stutter
NSF 融合加速器轨道 H:一个包容性、以人为本的融合框架,用于改变口吃者的语音 AI 可访问性
  • 批准号:
    2345086
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Cooperative Agreement
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
  • 批准号:
    10752369
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
Collaborative Research: FMitF: Track I: Designing Safe and Robust Human-machine Interactions with Fuzzy Mental Models
合作研究:FMitF:第一轨:利用模糊心理模型设计安全、鲁棒的人机交互
  • 批准号:
    2319317
  • 财政年份:
    2023
  • 资助金额:
    $ 79.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了