NSF Convergence Accelerator Track H: An Inclusive, Human-Centered, and Convergent Framework for Transforming Voice AI Accessibility for People Who Stutter
NSF 融合加速器轨道 H:一个包容性、以人为本的融合框架,用于改变口吃者的语音 AI 可访问性
基本信息
- 批准号:2345086
- 负责人:
- 金额:$ 500万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In a society increasingly navigated through voice-activated artificial intelligence (voice AI), people who stutter-representing over 3 million Americans and roughly 80 million individuals globally-face a major barrier: existing voice AI technologies frequently fail to recognize disfluent speech patterns, leading to a cascade of disadvantages in accessibility, employment, and societal inclusion. This project addresses this pressing concern by transforming voice AI into an inclusive platform that comprehends and respects the diversity of human speech. By reimagining voice AI through the lens of those who stutter, this project not only champions the cause of a historically marginalized group; it also enhances voice technology for everyone, because all speakers are disfluent to some extent. Aligning with NSF's mission, these advancements promote scientific progress, foster national welfare, and contribute to a more inclusive society by embracing and understanding diverse speech patterns.Operationalizing a human-centered and convergent paradigm, this project sets out to accomplish four key synergistic objectives: (1) cultivating a multidisciplinary and multi-sectoral network of stakeholders to steer impactful outcomes, (2) articulating a holistic vision for user-centric voice AI, (3) designing a comprehensive set of adaptive voice AI solutions and establishing a testbed for their evaluation, and (4) drafting guidelines for managing associated voice AI risks. Harnessing cutting-edge AI technology, the project will pioneer inclusive training and test datasets as well as annotation for accessible automatic speech recognition (ASR) and develop advanced ASR deep learning models. The adopted methodology encompasses iterative research, continuous engagement with end-users to pinpoint existing and future barriers, and stringent evaluations of solution efficacy. The overarching goal is to transform voice AI, through an ecosystem that is accessible and responsive to all, thereby ensuring that every voice is heard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在一个越来越多地使用语音激活人工智能(语音AI)的社会中,口吃的人(代表超过300万美国人和全球约8000万人)面临着一个主要障碍:现有的语音AI技术经常无法识别不流利的语音模式,导致在可访问性,就业和社会包容性方面的一系列劣势。该项目通过将语音AI转变为一个包容性平台来解决这一紧迫问题,该平台尊重并尊重人类语音的多样性。通过从口吃者的透镜重新构想语音AI,这个项目不仅支持了一个历史上被边缘化的群体的事业;它还为每个人增强了语音技术,因为所有的说话者在某种程度上都是不流利的。与NSF的使命一致,这些进步促进了科学进步,促进了国家福利,并通过拥抱和理解不同的语言模式为一个更具包容性的社会做出了贡献。该项目以人为本,融合范式,旨在实现四个关键的协同目标:(1)培养多学科和多部门的利益相关者网络,以引导有影响力的成果,(2)阐明以用户为中心的语音人工智能的整体愿景,(3)设计一套全面的自适应语音AI解决方案,并建立一个测试平台进行评估,(4)起草管理相关语音AI风险的指导方针。利用尖端的人工智能技术,该项目将开创包容性的训练和测试数据集,以及无障碍自动语音识别(ASR)的注释,并开发先进的ASR深度学习模型。所采用的方法包括迭代研究、与最终用户持续接触以查明现有和未来的障碍以及对解决方案有效性的严格评估。该奖项的总体目标是通过一个可访问和响应所有人的生态系统来改变语音AI,从而确保每个声音都能被听到。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nihar Mahapatra其他文献
Neutrophil Lymphocyte Ratio can Preempt Development of Sepsis After Adult Living Donor Liver Transplantation.
中性粒细胞比率可以预防成人活体供肝移植后脓毒症的发生。
- DOI:
10.1016/j.jceh.2021.11.008 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
S. Sarin;V. Pamecha;P. Sinha;Nilesh S Patil;Nihar Mahapatra - 通讯作者:
Nihar Mahapatra
Nihar Mahapatra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nihar Mahapatra', 18)}}的其他基金
NSF Convergence Accelerator Track H: Convergent, Human-Centered Design for Making Voice-Activated AI Accessible and Fair to People Who Stutter
NSF 融合加速器轨道 H:融合、以人为本的设计,使语音激活人工智能对口吃者来说更容易使用且公平
- 批准号:
2235916 - 财政年份:2022
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): AI-Based Decision Support for Linking Workers with Future Jobs and for Planning Work Transition and Career Pathway
融合加速器第一阶段 (RAISE):基于人工智能的决策支持,用于将工人与未来工作联系起来并规划工作过渡和职业道路
- 批准号:
1936857 - 财政年份:2019
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
AF: Small: Accurate, Biochemically-Relevant, and Robust Scoring Functions for Protein-Ligand Binding Affinity Prediction
AF:小:用于蛋白质-配体结合亲和力预测的准确、生化相关且稳健的评分功能
- 批准号:
1117900 - 财政年份:2011
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
- 批准号:
0627835 - 财政年份:2005
- 资助金额:
$ 500万 - 项目类别:
Continuing Grant
Integrated Research and Education in High-Performance Parallel Optimization Algorithms
高性能并行优化算法的综合研究和教育
- 批准号:
0102830 - 财政年份:2001
- 资助金额:
$ 500万 - 项目类别:
Continuing Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 500万 - 项目类别:
Standard Grant