CAREER: Geometric Shape Deformation with Applications in Medicine

职业:几何形状变形及其在医学中的应用

基本信息

  • 批准号:
    1350330
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

In spite of significant recent advances 3D computer graphics are still humbled when confronted with medical-grade requirements, so medical illustrators often continue to rely on 2D hand drawing. A fundamental challenge is that detailed geometric models and advanced nonlinear materials increase computational complexity, making them difficult to apply in real-time interactive applications. In this research, the PI will investigate an alternative approach based on geometric shape deformations rather than the processes which created them. He argues that intuitive shape deformation can be facilitated by guarantees of basic geometric properties such as smoothness and injectivity (no self-intersection). The key is to design algorithms that can do this quickly while providing the user with a small yet expressive set of adjustable controls to ensure an efficient interactive experience; the task of shape deformation techniques is to extrapolate this parsimonious, human manageable set of input controls into a full-scale 3D deformation field in a natural and predictable way. The PI's hypothesis is that this requirement can be formally expressed in terms of basic geometric properties. To this end, the PI will explore both direct (closed-form) and variational methods, because while direct methods excel in speed variational methods offer stronger guarantees and advanced geometric properties. In terms of direct methods, the PI will develop new ways to quickly blend certain groups of 3D transformations (e.g., with the help of new geometric algebraic structures). Transformation blending will be complemented by advanced influence weights that allow the user to explicitly control the resulting sparseness. In terms of variational methods, the PI will study deformation energies satisfying traditional properties such as rotation invariance but augmented with higher-order continuity and injectivity; here, the main challenge will be to find efficient numerical solutions for the underlying optimization problems. The PI believes it will prove possible to mitigate the inherent computational complexity of variational methods by suitably combining them with direct methods so as to cast some of the variational problems as convex optimizations, thereby opening the door to highly efficient convex solvers.Broader Impacts: Shape deformation is relevant to architecture, computer aided design (CAD), and many areas of science and engineering, as well as to the entertainment industry. But this project has primarily been motivated by medical applications, inspired by requests from the PI's collaborators at The Children's Hospital of Philadelphia. Given the right tools, the classical field of hand drawn medical illustration will evolve into 3D animated medical atlases, setting new standards in medical education. Shape deformation techniques could ultimately contribute to clinical praxis, by facilitating diagnosis and pre-operative planning when treating conditions such as pathological skull deformities (craniosynostosis). And shape modeling tools in expert hands could help lower the radiation dose required in CT scanning, by applying new reconstruction methods that combine user input with template models and accurate surface scans (obtained with radiation-free methods such as laser scanning). The PI also will organize seminars and courses that bring together medical and engineering students, including members of underrepresented groups, thereby promoting interdisciplinary collaboration in both research and education.
尽管最近取得了重大进展,但3D计算机图形在面对医学级要求时仍然很卑微,因此医学插图通常继续依赖2D手绘。 一个根本的挑战是,详细的几何模型和先进的非线性材料增加了计算复杂性,使它们难以应用于实时交互式应用。 在这项研究中,PI将研究一种基于几何形状变形而不是创建它们的过程的替代方法。 他认为,直观的形状变形可以通过保证基本的几何性质,如光滑性和内射性(无自相交)来促进。 关键是设计算法,可以快速做到这一点,同时为用户提供一个小而富有表现力的可调控件集,以确保有效的交互体验;形状变形技术的任务是将这种简约的,人类可管理的输入控件集以自然和可预测的方式外推到全尺寸的3D变形场。 PI的假设是,这个要求可以用基本的几何性质来正式表达。 为此,PI将探索直接(封闭形式)和变分方法,因为直接方法在速度方面优于变分方法,提供更强的保证和先进的几何性质。 在直接方法方面,PI将开发新的方法来快速混合某些3D变换组(例如,借助新的几何代数结构)。 变换混合将通过高级影响权重进行补充,允许用户显式控制生成的稀疏度。 在变分方法方面,PI将研究满足传统性质(如旋转不变性)但增加高阶连续性和注入性的变形能;这里,主要挑战将是为底层优化问题找到有效的数值解。 PI相信,通过将变分方法与直接方法适当地结合,可以减轻变分方法固有的计算复杂性,从而将一些变分问题转换为凸优化,从而为高效的凸求解器打开大门。形状变形与建筑、计算机辅助设计(CAD)、科学和工程的许多领域以及娱乐业有关。 但这个项目主要是由医学应用的动机,灵感来自费城儿童医院PI的合作者的要求。 如果有合适的工具,手绘医学插图的经典领域将演变成3D动画医学地图集,为医学教育树立新的标准。 形状变形技术最终有助于临床实践,通过在治疗病理性颅骨畸形(颅缝早闭)等疾病时促进诊断和术前计划。 专家手中的形状建模工具可以帮助降低CT扫描所需的辐射剂量,通过应用新的重建方法,将联合收割机用户输入与模板模型和精确的表面扫描(通过激光扫描等无辐射方法获得)相结合。 PI还将组织研讨会和课程,汇集医学和工程专业的学生,包括代表性不足的群体的成员,从而促进研究和教育的跨学科合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ladislav Kavan其他文献

Interactive Deep Colorization and its Application for Image Compression
交互式深色着色及其在图像压缩中的应用
Interplay of band energetics and photo/electro/chemical activity of SnO2 thin films
  • DOI:
    10.1007/s00706-023-03145-5
  • 发表时间:
    2023-12-12
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Ladislav Kavan;Magda Zlamalova;Vera Mansfeldova;Hana Krysova;Hana Tarabkova;Barbora Pitna Laskova
  • 通讯作者:
    Barbora Pitna Laskova
Work function and electrochemistry of ZnO (wurtzite) single crystals (F-1:L07)
氧化锌(纤锌矿)单晶(F-1:L07)的功函数与电化学
  • DOI:
    10.1016/j.ceramint.2024.11.066
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Michael Vorochta;Vera Mansfeldova;Samiran Chakraborty;Ladislav Kavan
  • 通讯作者:
    Ladislav Kavan
Untersuchung von Eisen(III)-phosphiten im Hinblick auf die Wasserstoffbindungen
  • DOI:
    10.1007/bf00913625
  • 发表时间:
    1975-01-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Miroslav Ebert;Ladislav Kavan
  • 通讯作者:
    Ladislav Kavan
Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
用于现实骨运动重建的适应性解剖模型
  • DOI:
    10.1111/cgf.12575
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Lifeng Zhu;Xiaoyan Hu;Ladislav Kavan
  • 通讯作者:
    Ladislav Kavan

Ladislav Kavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ladislav Kavan', 18)}}的其他基金

CHS: Small: Real-Time Simulation of Elastic Solids
CHS:小型:弹性固体的实时模拟
  • 批准号:
    1617172
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Geometric Shape Deformation with Applications in Medicine
职业:几何形状变形及其在医学中的应用
  • 批准号:
    1622360
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
  • 批准号:
    2106672
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
  • 批准号:
    2106578
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Convex Body Shape Recovery via Geometric Measures and Inequalities
通过几何测量和不等式恢复凸体形状
  • 批准号:
    2132330
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
  • 批准号:
    2107434
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Convex Body Shape Recovery via Geometric Measures and Inequalities
通过几何测量和不等式恢复凸体形状
  • 批准号:
    2002778
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Geometric and Semantic Structures for Two- and Three-Dimensional Shape Understanding
二维和三维形状理解的几何和语义结构
  • 批准号:
    1953052
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
A General and Efficient Framework for Computational Shape Analysis Through Geometric Distributions
通过几何分布进行计算形状分析的通用且有效的框架
  • 批准号:
    1819131
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
The shape of chaos: geometric advances in partially hyperbolic dynamics
混沌的形状:部分双曲动力学的几何进展
  • 批准号:
    DP180101385
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Projects
Doctoral Dissertation Research: An analysis of the evolution of shape change trajectories using 3D geometric morphometrics
博士论文研究:使用 3D 几何形态测量学分析形状变化轨迹的演化
  • 批准号:
    1751885
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了