CAREER: Sketching Algorithms for Massive Data

职业:海量数据的草图算法

基本信息

  • 批准号:
    1350670
  • 负责人:
  • 金额:
    $ 51.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

A sketch of a massive dataset is some compression of it which still allows for answering, sometimes only approximately, some pre-specified types of queries about the data. For many query types of interest, it turns out that sketches exist that provide exponentially smaller compressions. This feature has made sketching methods pervasive in coping with recent trends in data explosion to reduce both communication bandwidth and required storage capacity. Sketching has also been applied to obtain algorithmic speedup for certain high-dimensional problems such as nearest neighbor search, clustering, and low-rank approximation for large matrices, as well as to enable more efficient signal acquisition in a field that has come to be known as compressed sensing. This research plans to further the state of knowledge concerning three intertwined subtopics of sketching: streaming, dimensionality reduction, and compressed sensing.A fundamental question the PI will investigate is whether one can design sketches that are moderately "universal", in that the same sketch can be used to answer many different types of queries. Dimensionality reduction has been successfully used to circumvent the so-called "curse of dimensionality" in many problems, where the best known algorithms have running times that scale poorly with dimension. This research plans to study the tradeoffs between approximation quality, number of vectors in the data set, and target dimension, and to close gaps between known upper and lower bounds. Compressed sensing has found applications in a diverse range of areas, such as magnetic resonance imaging and photography. This research plans to investigate more efficient compressed sensing schemes for providing various types of approximate recovery guarantees.
大型数据集的草图是对其进行的一些压缩,这些压缩仍然允许回答(有时只是大约)一些预先指定的有关数据的查询类型。对于许多感兴趣的查询类型,事实证明存在提供指数级较小压缩的草图。这一特征使得草图绘制方法在应对最近的数据爆炸趋势中变得普遍,以减少通信带宽和所需的存储容量。草图也被应用于某些高维问题的算法加速,例如最近邻搜索,聚类和大型矩阵的低秩近似,以及在被称为压缩感知的领域中实现更有效的信号采集。本研究计划进一步了解草图的三个相互交织的子主题:流,降维和压缩感知。PI将研究的一个基本问题是,是否可以设计出适度的“通用”草图,即同一草图可以用于回答许多不同类型的查询。在许多问题中,维度约简已经成功地用于规避所谓的“维度灾难”,其中最著名的算法的运行时间随维度的缩放很差。这项研究计划研究近似质量,数据集中的向量数量和目标维度之间的权衡,并缩小已知上限和下限之间的差距。 压缩感知已经在各种领域中找到了应用,例如磁共振成像和摄影。本研究计划研究更有效的压缩感知方案,提供各种类型的近似恢复保证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jelani Nelson其他文献

Sketching and streaming algorithms
草图和流算法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jelani Nelson
  • 通讯作者:
    Jelani Nelson
Johnson-Lindenstrauss notes
约翰逊-林登施特劳斯笔记
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jelani Nelson
  • 通讯作者:
    Jelani Nelson
Sketching and streaming high-dimensional vectors
绘制和流式传输高维向量
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jelani Nelson
  • 通讯作者:
    Jelani Nelson
Terminal Embeddings in Sublinear Time
亚线性时间的终端嵌入
Lower Bounds for Oblivious Subspace Embeddings
不经意子空间嵌入的下界

Jelani Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jelani Nelson', 18)}}的其他基金

Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311648
  • 财政年份:
    2023
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
  • 批准号:
    1908821
  • 财政年份:
    2019
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Dynamic data structures for vectors and graphs in sublinear memory
AF:小:协作研究:亚线性存储器中向量和图形的动态数据结构
  • 批准号:
    1951384
  • 财政年份:
    2019
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant
AF:Chaining methods and their applications to computer science
AF:链接方法及其在计算机科学中的应用
  • 批准号:
    1618373
  • 财政年份:
    2016
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Randomized methods for high-dimensional data analysis
BIGDATA:F:DKA:高维数据分析的随机方法
  • 批准号:
    1447471
  • 财政年份:
    2014
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
  • 批准号:
    2326998
  • 财政年份:
    2023
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
  • 批准号:
    2326999
  • 财政年份:
    2023
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311648
  • 财政年份:
    2023
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Continuing Grant
CAREER: Sketching for Secure Computation on Large Inputs
职业:绘制大输入安全计算草图
  • 批准号:
    2144798
  • 财政年份:
    2022
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Continuing Grant
Self-Sketching Domain Specific Accelerators: Build Hardware from Software
自绘制领域特定加速器:从软件构建硬件
  • 批准号:
    RGPIN-2018-06795
  • 财政年份:
    2022
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Discovery Grants Program - Individual
Improved genomic sketching for MUMmer and metagenomics
改进了 MUMmer 和宏基因组的基因组草图
  • 批准号:
    10453031
  • 财政年份:
    2022
  • 资助金额:
    $ 51.28万
  • 项目类别:
Improved genomic sketching for MUMmer and metagenomics
改进了 MUMmer 和宏基因组的基因组草图
  • 批准号:
    10670162
  • 财政年份:
    2022
  • 资助金额:
    $ 51.28万
  • 项目类别:
Leveraging k-mer sketching statistics to enhance metagenomic methods and alignment algorithms
利用 k-mer 草图统计来增强宏基因组方法和比对算法
  • 批准号:
    10675449
  • 财政年份:
    2022
  • 资助金额:
    $ 51.28万
  • 项目类别:
CAREER: Frontiers in Matrix Sketching
职业:矩阵草图的前沿
  • 批准号:
    2045590
  • 财政年份:
    2021
  • 资助金额:
    $ 51.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了