CAREER: Sketching for Secure Computation on Large Inputs

职业:绘制大输入安全计算草图

基本信息

  • 批准号:
    2144798
  • 负责人:
  • 金额:
    $ 59.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Today, privacy sensitive personal data is everywhere. Collecting and performing analytics on large amounts of personal data has become widespread and is intrinsic to the functionality of a rapidly growing number of apps and services. While desirable from a functionality perspective, this now popular computing paradigm raises unprecedented security and privacy concerns. A key research challenge is to design protocols for secure and private computation that can scale to these massive volumes of data. The focus of this project is to develop such protocols by combining techniques from secure multi-party computation, sketching algorithms, and differential privacy.To make secure computation scale to massive inputs, it is necessary to develop protocols with costs (i.e., computation and communication) sublinear in the input size. This project combines advances in all three of the areas mentioned above to achieve this goal. First, the project studies the privacy properties of sketching algorithms and develops algorithms well suited to secure multi-party computation. Next, the project will study the necessary modification to make the resulting protocols robust to malicious users and inputs. Then, it will consider how the approximate nature of sketching algorithms impacts the privacy of the resulting computations and leverage differential privacy to ensure that individual privacy is maintained. Finally, the project combines these approaches to instantiate protocols for real-world applications. The results of this project will enable new secure and privacy-preserving computations for large-data applications such as machine learning and network measurement. Additionally, the project will result in research opportunities and new course materials for graduate and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天,隐私敏感的个人数据无处不在。对大量个人数据进行收集和分析已经变得非常普遍,并且是快速增长的应用程序和服务的固有功能。虽然从功能的角度来看是可取的,但这种现在流行的计算模式引起了前所未有的安全和隐私问题。 一个关键的研究挑战是设计安全和私有计算的协议,这些协议可以扩展到这些海量数据。该项目的重点是通过结合安全多方计算,草图算法和差分隐私等技术来开发此类协议。为了使安全计算规模达到大规模输入,需要开发具有成本的协议(即,计算和通信)在输入大小上是次线性的。该项目结合了上述所有三个领域的进展,以实现这一目标。 首先,该项目研究了草图算法的隐私属性,并开发了非常适合于安全多方计算的算法。接下来,该项目将研究必要的修改,以使最终协议对恶意用户和输入具有鲁棒性。然后,它将考虑草图算法的近似性质如何影响最终计算的隐私,并利用差异隐私来确保维护个人隐私。 最后,该项目将这些方法结合起来,为现实世界的应用程序实例化协议。该项目的成果将为机器学习和网络测量等大数据应用提供新的安全和隐私保护计算。此外,该项目将为研究生和本科生提供研究机会和新的课程材料。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Secure Sampling with Sublinear Communication
使用次线性通信进行安全采样
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Choi, Seung Geol;Dachman-Soled, Dana;Gordon, S. Dov;Liu, Linsheng;Yerukhimovich, Arkady
  • 通讯作者:
    Yerukhimovich, Arkady
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arkady Yerukhimovich其他文献

Efficient Data Storage in Large Nanoarrays
大型纳米阵列中的高效数据存储
  • DOI:
    10.1007/s00224-004-1196-9
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Lee;J. Savage;Arkady Yerukhimovich
  • 通讯作者:
    Arkady Yerukhimovich
Secure and Resilient Cloud Computing for the Department of Defense
为国防部提供安全且有弹性的云计算
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Schear;Arkady Yerukhimovich;V. Gadepally;Thomas Moyer;Patrick T. Cable;R. Cunningham
  • 通讯作者:
    R. Cunningham
On the Round Complexity of Zero-Knowledge Proofs Based on One-Way Permutations
基于单向排列的零知识证明的轮复杂度
  • DOI:
    10.1007/978-3-642-14712-8_12
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. D. Gordon;H. Wee;David Xiao;Arkady Yerukhimovich
  • 通讯作者:
    Arkady Yerukhimovich
(Efficient) Universally Composable Oblivious Transfer Using a Minimal Number of Stateless Tokens
使用最少数量的无状态代币进行(高效)通用可组合的不经意传输
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Seung Geol Choi;Jonathan Katz;Dominique Schröder;Arkady Yerukhimovich;Hong
  • 通讯作者:
    Hong
Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions
来自最小假设的有界共谋基于属性的加密
  • DOI:
    10.1007/978-3-662-54388-7_3
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Itkis;Emily Shen;Mayank Varia;David A. Wilson;Arkady Yerukhimovich
  • 通讯作者:
    Arkady Yerukhimovich

Arkady Yerukhimovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arkady Yerukhimovich', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: New Approaches for Large Scale Secure Computation
SaTC:核心:媒介:协作:大规模安全计算的新方法
  • 批准号:
    1955620
  • 财政年份:
    2020
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Continuing Grant
PISCES 2023 - Partnership in Securing Cyberspace Through Education and Service (Renewal)
双鱼座 2023 - 通过教育和服务保护网络空间的伙伴关系(续订)
  • 批准号:
    1753983
  • 财政年份:
    2018
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Continuing Grant
EAPSI: Limits On The Power of Zero Knowledge Proofs in Cryptographic Protocols
EAPSI:加密协议中零知识证明力量的限制
  • 批准号:
    0813055
  • 财政年份:
    2008
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
  • 批准号:
    2326998
  • 财政年份:
    2023
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
  • 批准号:
    2326999
  • 财政年份:
    2023
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311648
  • 财政年份:
    2023
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Continuing Grant
Self-Sketching Domain Specific Accelerators: Build Hardware from Software
自绘制领域特定加速器:从软件构建硬件
  • 批准号:
    RGPIN-2018-06795
  • 财政年份:
    2022
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Discovery Grants Program - Individual
Improved genomic sketching for MUMmer and metagenomics
改进了 MUMmer 和宏基因组的基因组草图
  • 批准号:
    10453031
  • 财政年份:
    2022
  • 资助金额:
    $ 59.76万
  • 项目类别:
Improved genomic sketching for MUMmer and metagenomics
改进了 MUMmer 和宏基因组的基因组草图
  • 批准号:
    10670162
  • 财政年份:
    2022
  • 资助金额:
    $ 59.76万
  • 项目类别:
Leveraging k-mer sketching statistics to enhance metagenomic methods and alignment algorithms
利用 k-mer 草图统计来增强宏基因组方法和比对算法
  • 批准号:
    10675449
  • 财政年份:
    2022
  • 资助金额:
    $ 59.76万
  • 项目类别:
CAREER: Frontiers in Matrix Sketching
职业:矩阵草图的前沿
  • 批准号:
    2045590
  • 财政年份:
    2021
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 59.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了