CAREER: Apprenticeship Learning for Robotic Manipulation of Deformable Objects

职业:可变形物体的机器人操作学徒学习

基本信息

  • 批准号:
    1351028
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-15 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

This project considers the problem of apprenticeship learning, in which a robot first gets access to demonstrations of a task and ought to learn from these demonstrations how to perform that task in new, yet similar, situations. This line of work has already shown significant promise, including in helicopter control where it enabled autonomous helicopter aerobatics at the level of the best human pilots. However, fundamental limitations remain, and robotic capabilities to manipulate deformable objects are currently still well below human level. The approach followed builds on, and extends, non-rigid registration algorithms, which can capture how scenes with deformable objects relate to each other. Such registration is extrapolated to morph a demonstrated manipulation trajectory into a good trajectory for a new scene. New machine learning algorithms are developed to enable choosing the optimal training demonstration and the optimal morphing objective while accounting for external constraints, such as avoiding collisions and satisfying joint limits. Infrastructure is being built for large-scale data collection of demonstrations and theoretical and empirical characterizations are developed for how much data is needed for a given task. Concrete challenge tasks considered are knot tying, cloth and fabric manipulation, surgical suturing, and small surgical procedures. Results will be incorporated into the PI's graduate robotics course and the source code will be shared with the robotics community.
该项目考虑了学徒学习的问题,其中机器人首先获得任务的演示,并且应该从这些演示中学习如何在新的但类似的情况下执行该任务。 这一领域的工作已经显示出巨大的前景,包括在直升机控制方面,它使最好的人类飞行员能够进行自主直升机特技飞行。 然而,基本的限制仍然存在,机器人操纵可变形物体的能力目前仍远低于人类水平。所遵循的方法建立在非刚性配准算法的基础上,并对其进行了扩展,该算法可以捕获具有可变形对象的场景如何相互关联。 这种配准被外推以将所演示的操纵轨迹变形为用于新场景的良好轨迹。 开发了新的机器学习算法,以便能够选择最佳训练演示和最佳变形目标,同时考虑外部约束,例如避免碰撞和满足关节限制。正在为大规模的示范数据收集建立基础设施,并为特定任务需要多少数据制定理论和经验特征。 考虑的具体挑战任务是打结、布料和织物操作、外科手术和小型外科手术。结果将被纳入PI的研究生机器人课程,源代码将与机器人社区共享。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pieter Abbeel其他文献

On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
论微调与元强化学习的有效性
Data fitting with geometric-programming-compatible softmax functions
  • DOI:
    10.1007/s11081-016-9332-3
  • 发表时间:
    2016-08-04
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Warren Hoburg;Philippe Kirschen;Pieter Abbeel
  • 通讯作者:
    Pieter Abbeel
Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs
使用对象可组合 NeRF 缩小视觉模拟与真实的差距
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikhil Mishra;Maximilian Sieb;Pieter Abbeel;Xi Chen
  • 通讯作者:
    Xi Chen
Any-point Trajectory Modeling for Policy Learning
用于政策学习的任意点轨迹建模
  • DOI:
    10.48550/arxiv.2401.00025
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuan Wen;Xingyu Lin;John So;Kai Chen;Qi Dou;Yang Gao;Pieter Abbeel
  • 通讯作者:
    Pieter Abbeel
Tokenized and continuous embedding compressions of protein sequence and structure
蛋白质序列和结构的标记化与连续嵌入压缩
  • DOI:
    10.1016/j.patter.2025.101289
  • 发表时间:
    2025-06-13
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Amy X. Lu;Wilson Yan;Kevin K. Yang;Vladimir Gligorijevic;Kyunghyun Cho;Pieter Abbeel;Richard Bonneau;Nathan C. Frey
  • 通讯作者:
    Nathan C. Frey

Pieter Abbeel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pieter Abbeel', 18)}}的其他基金

Collaborative Research: NRI: INT: Scalable, Customizable, Robot Learning with Humans
合作研究:NRI:INT:可扩展、可定制、与人类一起学习的机器人
  • 批准号:
    2024675
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Doctoral Student Career Development at the Workshop on the Algorithmic Foundations of Robotics (WAFR)
机器人算法基础研讨会(WAFR)上的博士生职业发展
  • 批准号:
    1648643
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI-Large: Collaborative Research: Multilateral Manipulation by Human-Robot Collaborative Systems
NRI-Large:协作研究:人机协作系统的多边操纵
  • 批准号:
    1227536
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RI: Small: Large-Scale Machine Learning for Connectomics
RI:小型:连接组学的大规模机器学习
  • 批准号:
    1118055
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Learning for Control of Synthetic and Cyborg Insects in Uncertain Dynamic Environments
CPS:中:学习在不确定的动态环境中控制合成昆虫和机器人昆虫
  • 批准号:
    0931463
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

A Learning Support Environment for Paper Revision Skills based on Cognitive Apprenticeship Theory
基于认知学徒理论的论文修改技能学习支持环境
  • 批准号:
    20H04295
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Increasing Career Competencies in Computer Networking Courses using Simulation, Hands-On Learning, and Project-Based Learning Within a Cognitive Apprenticeship Framework
在认知学徒框架内使用模拟、实践学习和基于项目的学习来提高计算机网络课程的职业能力
  • 批准号:
    2021203
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: RI: RUI: Performance guarantees for online apprenticeship learning with unknown features
CRII:RI:RUI:具有未知特征的在线学徒学习的性能保证
  • 批准号:
    1850149
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EXP: Collaborative Research: Cultivating Apprenticeship Learning for Architecture, Engineering, and Construction Using Mixed Reality
EXP:协作研究:使用混合现实培养建筑、工程和施工的学徒学习
  • 批准号:
    1735804
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EXP: Collaborative Research: Cultivating Apprenticeship Learning for Architecture, Engineering, and Construction Using Mixed Reality
EXP:协作研究:使用混合现实培养建筑、工程和施工的学徒学习
  • 批准号:
    1735878
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Apprenticeship learning for heterogeneous robots
异构机器人的学徒学习
  • 批准号:
    16K16132
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
SBIR Phase II: Crowd Sourcing Apprenticeship Learning: LawMeets - A Web Platform for Teaching Entrepreneurial Lawyering
SBIR 第二阶段:众包学徒学习:LawMeets - 创业律师教学网络平台
  • 批准号:
    1229941
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: Crowd Sourcing Apprenticeship Learning: A Web Platform for Teaching Entrepreneurial Lawyering
SBIR 第一阶段:众包学徒学习:创业律师教学网络平台
  • 批准号:
    1113008
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Medium: Robust Intelligent Manipulation and Apprenticeship Learning for Robotic Surgical Assistants
RI:中:机器人手术助手的鲁棒智能操作和学徒学习
  • 批准号:
    0905344
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A Cognitive-Apprenticeship Learning Curriculum Augmented by Cognitive Tutors (CAL-CT) for Fundamental Programming Concepts
由认知导师 (CAL-CT) 增强的认知学徒学习课程,用于基本编程概念
  • 批准号:
    0837505
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了