CAREER: Arithmetic and Geometry of Pure and Mixed Shimura Varieties
职业:纯志村品种和混合志村品种的算术和几何
基本信息
- 批准号:1352216
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central theme in modern number theory is the conjectural relations between classes of automorphic representations and Galois representations, with notions of algebraicity on both sides, in the context of Langlands program and its p-adic and p-torsion analogues. To realize such conjectural relations at all, most known methods so far involve the use of the cohomology of certain algebraic varieties and their models over the integers; namely, the so-called (pure) Shimura varieties, the Kuga families over them (generalizing the Kuga--Sato varieties over modular curves) which are special cases of the so-called mixed Shimura varieties, their compactifications, and good models of these over the integers. The research projects in this proposal aim at making further progress in understanding such fundamentally important geometric objects, through extensive studies along directions both old and new, and at developing their new arithmetic applications.Number theory and geometry are the two oldest branches of mathematics, and combined applications of them (such as error-correcting codes) have become indispensable in modern daily life (involving, for example, telecommunication and data storage). The pure and mixed Shimura varieties are important geometric objects relating algebra, analysis, and geometry in natural yet mysterious ways, and advances in their theory have contributed to many exciting recent developments in number theory. The education projects in this proposal aim at creating a vertically integrated learning environment for number theory and arithmetic geometry at the University of Minnesota, from which students at all levels can benefit, including supports for outreach activities, summer learning projects, and the development of courses and learning seminars.
现代数论的一个中心主题是在朗兰兹程序及其p-进和p-挠类的背景下,自同构表示类和伽罗瓦表示类之间的猜想关系,两边都有代数性的概念。为了实现这种猜想关系,到目前为止,大多数已知的方法涉及使用某些代数簇及其在整数上的模型的上同调;即所谓的(纯)Shimura簇,它们上的Kuga族(在模曲线上推广Kuga-Sato簇),它们是所谓的混合Shimura簇的特例,它们的紧致化,以及这些在整数上的好的模型。这项建议中的研究项目旨在通过沿新旧方向的广泛研究,在理解这些基本的重要几何对象方面取得进一步的进展,并开发它们的新的算术应用。数论和几何是数学中最古老的两个分支,它们的组合应用(如纠错码)在现代日常生活(例如,涉及电信和数据存储)中已变得不可或缺。纯粹的和混合的下村变种是重要的几何对象,它们以自然而神秘的方式将代数、分析和几何联系在一起,它们的理论的进步促进了数论的许多令人兴奋的最近发展。该提案中的教育项目旨在为明尼苏达大学的数论和算术几何创造一个垂直整合的学习环境,各级学生都可以从中受益,包括支持外联活动、暑期学习项目以及课程和学习研讨会的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kai-Wen Lan其他文献
Toroidal compactifications of PEL-type Kuga families
- DOI:
10.2140/ant.2012.6.885 - 发表时间:
2012-07 - 期刊:
- 影响因子:1.3
- 作者:
Kai-Wen Lan - 通讯作者:
Kai-Wen Lan
Kai-Wen Lan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kai-Wen Lan', 18)}}的其他基金
Torsion Boundary Cohomology of PEL-type Shimura Varieties
PEL型Shimura品种的扭转边界上同调
- 批准号:
1258962 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Torsion Boundary Cohomology of PEL-type Shimura Varieties
PEL型Shimura品种的扭转边界上同调
- 批准号:
1069154 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Connections Between Tropical Geometry, Arithmetic Geometry, and Combinatorics
职业:热带几何、算术几何和组合数学之间的联系
- 批准号:
2044564 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Etale and Motivic Homotopy Theory and Applications to Arithmetic Geometry
职业:基元同伦理论及其在算术几何中的应用
- 批准号:
2001890 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Etale and Motivic Homotopy Theory and Applications to Arithmetic Geometry
职业:基元同伦理论及其在算术几何中的应用
- 批准号:
1552730 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Arithmetic, Algebraic, and Non-Archimedean Geometry
职业:算术、代数和非阿基米德几何
- 批准号:
1555048 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
- 批准号:
1350075 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Explicit Methods in Arithmetic Geometry
职业:算术几何中的显式方法
- 批准号:
1346894 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Explicit Methods in Arithmetic Geometry
职业:算术几何中的显式方法
- 批准号:
1151047 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Undecidability in Number Theory and Applications of Arithmetic Geometry
职业:数论中的不可判定性和算术几何的应用
- 批准号:
1056703 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Lattices and Sphere Packings, Arithmetic Geometry and Computational Number Theory
职业:格子和球堆积、算术几何和计算数论
- 批准号:
0952486 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant