CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
基本信息
- 批准号:1350075
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the study of geometry, one often gains insight into the nature of a particular geometric object by studying all such objects simultaneously. For instance, one might find the optimal configuration of robots in a factory by studying the "space" of all such configurations of robots, as the geometry of the latter can lend insight as to which particular configurations are problematic in a given situation (such as when robotic arms might jam or interfere with each other). Such "spaces" of geometric structures are called moduli spaces. The investigator's project is dedicated to a study of moduli spaces of surfaces, a key feature of the work being the interaction of geometry and algebra in the study of moduli. Some of this work will be conducted with the assistance of graduate students. The investigator will develop a graduate topics course in moduli spaces to stimulate interaction between students working in geometry and topology and those working in algebra. The investigator will also run biennial workshops designed to foster the upward professional development of graduate and undergraduate students working in fields related to moduli as well as to stimulate interaction across barriers between these disciplines.The investigator will study the moduli of Riemann surfaces. The proposed research naturally falls into three projects. The first is concerned with profinite aspects of mapping class groups of surfaces. In particular, the investigator will further develop profinite Teichmueller theory as initiated by Boggi, and will also pursue a study of centralizers in profinite completions of mapping class groups. The second project concerns the geometry of surface bundles and their relation to topology and algebra. In particular, the investigator will study distinctions between a number of geometric properties of subgroups of mapping class groups in analogy with more classical work in Kleinian groups, and will also continue a search for atoroidal surfaces bundles over surfaces. The third portion of the proposed work is dedicated to a study of the deformation theory of hyperbolic 3-manifolds. In particular, the investigator will continue study of certain analytic functions between Teichmuller spaces introduced by Thurston in his approach to his Geometrization conjecture, which come to bear on problems related to making Geometrization effective, as well as toward understanding certain pathology in the study of general deformation spaces of 3-manifolds.
在几何学的研究中,人们经常通过同时研究所有这些对象来洞察特定几何对象的本质。 例如,人们可以通过研究机器人的所有此类配置的“空间”来找到工厂中机器人的最佳配置,因为后者的几何形状可以洞察哪些特定配置在给定情况下是有问题的(例如当机器人手臂可能卡住或相互干扰时)。 这种几何结构的“空间”称为模空间。调查员的项目是致力于研究的模数空间的表面,一个关键的特点是工作的相互作用的几何和代数的研究模数。其中一些工作将在研究生的协助下进行。调查员将开发一个研究生课题课程在模空间,以刺激学生之间的互动工作在几何和拓扑学和那些工作在代数。研究员还将举办两年一次的研讨会,旨在促进在模量相关领域工作的研究生和本科生的向上专业发展,并刺激这些学科之间跨越障碍的互动。研究员将研究黎曼曲面的模量。 拟议的研究自然分为三个项目福尔斯。 第一个是有关profinite方面的映射类群体的表面。特别是,调查员将进一步发展profinite Teichmueller理论发起的Boggi,也将继续研究中心化的profinite完成的映射类组。 第二个项目涉及曲面丛的几何及其与拓扑和代数的关系。 特别是,调查员将研究一些几何性质之间的区别分组的映射类组在类比与更经典的工作在克莱因集团,也将继续寻找atoroidal表面束的表面。 第三部分是研究双曲三维流形的形变理论。 特别是,研究人员将继续研究瑟斯顿在他的几何化猜想方法中引入的Teichmuller空间之间的某些解析函数,这些解析函数涉及与使几何化有效相关的问题,以及在研究3-流形的一般变形空间时理解某些病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AUTUMN KENT其他文献
AUTUMN KENT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AUTUMN KENT', 18)}}的其他基金
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
- 批准号:
2139125 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Hyperbolic Manifolds and Their Moduli Spaces
双曲流形及其模空间
- 批准号:
1904130 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
- 批准号:
1916752 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Geometry, algebra, and analysis of moduli of hyperbolic manifolds
几何、代数和双曲流形模分析
- 批准号:
1104871 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
- 批准号:
22KF0205 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
- 批准号:
2137060 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Tropical Methods in the Study of Moduli Spaces of Families of Curves
研究曲线族模空间的热带方法
- 批准号:
2054135 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
- 批准号:
2100962 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RUI: Combinatorial Algebraic Geometry: Curves and Their Moduli
RUI:组合代数几何:曲线及其模
- 批准号:
2101861 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
- 批准号:
2202068 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Fundamental groups and moduli spaces of curves in positive characteristic
正特性曲线的基本群和模空间
- 批准号:
20K14283 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli spaces of stable and unstable maps to curves and surfaces
稳定和不稳定的模空间映射到曲线和曲面
- 批准号:
2426278 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Studentship