Torsion Boundary Cohomology of PEL-type Shimura Varieties

PEL型Shimura品种的扭转边界上同调

基本信息

  • 批准号:
    1069154
  • 负责人:
  • 金额:
    $ 13.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2012-10-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI proposes to study the boundary cohomology of (general) PEL-type Shimura varieties, namely the cone of the canonical morphism from the compactly supported cohomology to the ordinary cohomology, with torsion (or integral) automorphic coefficients. A consequence will be a better understanding of the whole torsion cohomology of PEL-type Shimura varieties, which might answer many questions about freeness, liftability, and congruences, and might explain intriguing (potential) pathologies in the torsion interior cohomology (which the PI noticed in his joint work with Junecue Suh). The PI hopes to show that such pathologies do occur in general, but with arithmetically meaningful (and maybe surprising) explanations. The PI also hopes that techniques developed in this project will be useful for studying other interesting questions, such as the arithmeticity of theta correspondences.Geometry and number theory are two oldest branches of mathematics, and combined applications of them (such as error correcting codes) have become indispensable in modern daily life (involving, for example, telecommunication and data storage). The so-called Shimura varieties are important geometric objects because they relate analysis, geometry, and number theory in a natural yet mysterious way, and advances in the theory of Shimura varieties have contributed to many of the most exciting recent developments in number theory. This project aims at exploring some relatively new territories in this important theory, where many basic questions have yet to be answered. The PI believes that progresses in this project will establish new links among several very different branches of geometry and number theory. The project will also support activities disseminating the knowledge and new ideas in this field.
在这个项目中,PI建议研究(一般)PEL型Shimura簇的边界上同调,即从紧支撑上同调到普通上同调的典型态射的锥,具有挠(或积分)自守系数。 其结果将是更好地理解PEL型志村变种的整个扭转上同调,这可能会回答许多关于自由度,提升性和同余的问题,并可能解释扭转内部上同调中有趣的(潜在的)病理(PI在他与Junecue Suh的联合工作中注意到)。 PI希望表明,这种病理确实普遍存在,但有算术意义(也许令人惊讶)的解释。 PI还希望在这个项目中开发的技术将有助于研究其他有趣的问题,如theta对应的算术性。几何和数论是数学的两个最古老的分支,它们的组合应用(如纠错码)已经成为现代日常生活中不可或缺的(涉及,例如,电信和数据存储)。 所谓的志村簇是重要的几何对象,因为它们以一种自然而神秘的方式将分析、几何和数论联系起来,志村簇理论的进步促成了数论中许多最令人兴奋的最新发展。 本项目旨在探索这一重要理论中的一些相对较新的领域,其中许多基本问题尚未得到回答。 PI认为,该项目的进展将在几何和数论的几个非常不同的分支之间建立新的联系。 该项目还将支持传播这一领域的知识和新思想的活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai-Wen Lan其他文献

Toroidal compactifications of PEL-type Kuga families
  • DOI:
    10.2140/ant.2012.6.885
  • 发表时间:
    2012-07
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Kai-Wen Lan
  • 通讯作者:
    Kai-Wen Lan

Kai-Wen Lan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai-Wen Lan', 18)}}的其他基金

CAREER: Arithmetic and Geometry of Pure and Mixed Shimura Varieties
职业:纯志村品种和混合志村品种的算术和几何
  • 批准号:
    1352216
  • 财政年份:
    2014
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Torsion Boundary Cohomology of PEL-type Shimura Varieties
PEL型Shimura品种的扭转边界上同调
  • 批准号:
    1258962
  • 财政年份:
    2012
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
  • 批准号:
    2344156
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Facilities for Atmospheric Boundary Layer Evaluation and Testing
大气边界层评估和测试设施
  • 批准号:
    LE240100116
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
  • 批准号:
    2340121
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Research Grant
AGS-FIRP Track 1: Enhancing Undergraduate Education of the Planetary Boundary Layer during the 2024 Solar Eclipse
AGS-FIRP 第 1 轨道:加强 2024 年日食期间行星边界层的本科教育
  • 批准号:
    2336464
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Impact of roughness on adverse pressure gradient turbulent boundary layers
粗糙度对逆压梯度湍流边界层的影响
  • 批准号:
    DP240103015
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Discovery Projects
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
CAREER: Investigating the tectono-magmatic response to a transitioning plate boundary: a case study of the California Borderlands
职业:研究板块过渡边界的构造岩浆响应:加州边境地区的案例研究
  • 批准号:
    2338594
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
Assessing the paleoenvironmental and geobiological significance of carbonates from the Eocene-Oligocene boundary of the White River Group
评估白河群始新世-渐新世边界碳酸盐的古环境和地球生物学意义
  • 批准号:
    2311532
  • 财政年份:
    2024
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了