Mechanisms of nutrient transport from plants to biotrophic pathogens
养分从植物到生物营养病原体的运输机制
基本信息
- 批准号:1353366
- 负责人:
- 金额:$ 76.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diseases caused by plant pathogens are a perennial threat to global food security and cost hundreds of billions of dollars annually. The most cost-effective, sustainable method for disease control is to breed crops with naturally occurring plant genes for resistance to pathogens, which, in practice, are often quickly overcome by co-evolving pathogens. This project will lay the groundwork for a new approach to engineer genetic resistance, based on the fact that most pathogens depend on the plant host to supply essential nutrients for their growth. By identifying and engineering the plant genes responsible for nutrient transfer so that they can no longer be used by the pathogen, it could be possible to cut the pathogen's supply lines and prevent disease development. This approach could provide resistance against a wide range of pathogens and would be very difficult for pathogens to overcome by co-evolution.This project focuses on plant-encoded transporters of amino acids and sugar that are co-opted by Hyaloperonospora arabidopsidis (Hpa) to facilitate nutrient acquisition. This project will provide new insights into the contributions of host genes to pathogen nutrition, and will investigate mechanisms through which transporters are co-opted to serve the invader. These aspects of plant-pathogen interactions are critically important but inadequately understood and under-studied. Reverse genetics will be used to identify amino acid transporters necessary for colonization of Arabidopsis by Hpa. Double mutants and RNAi lines will be used to assess genetic redundancy and physiological compensation. Mutants will be studied to determine the impact on infection by other pathogens, and whether the associated phenotypes are due to perturbation of innate immune responses. A subset of transporters will be examined at the molecular level to evaluate the importance of their differential expression and subcellular localization for pathogen nutrient acquisition. Biochemical properties and effects of amino acid transporters on flux across the plasma membrane will be determined to identify their role in the plant. Finally, a novel approach combining metabolomics and labeled nutrients will be used to test the importance of amino acid transporters for pathogen nutrition. Project participants will engage in outreach through the Partnership for Research and Education in Plants, in which high school students will conduct original research on transporter mutants. Participating scientists benefit by honing their ability to discuss the global impact of plant science research and the specific significance of their projects.
植物病原体引起的疾病是对全球粮食安全的长期威胁,每年造成数千亿美元的损失。最具成本效益、可持续的疾病控制方法是培育具有天然植物基因的作物,以抵抗病原体,在实践中,这些病原体往往很快被共同进化的病原体所克服。该项目将为工程遗传抗性的新方法奠定基础,其基础是大多数病原体依赖于植物宿主为其生长提供必要的营养。通过识别和改造负责营养转移的植物基因,使它们不再被病原体利用,有可能切断病原体的供应线,防止疾病发展。这种方法可以提供对广泛的病原体的抗性,并且病原体很难通过共同进化来克服。本项目的重点是植物编码的氨基酸和糖的转运蛋白,这些转运蛋白被阿拉伯透明操作孢菌(Hpa)增选以促进营养物质的获取。该项目将为宿主基因对病原体营养的贡献提供新的见解,并将研究转运蛋白被增选为入侵者服务的机制。植物-病原体相互作用的这些方面是至关重要的,但没有得到充分的理解和研究。反向遗传学将用于鉴定Hpa定殖拟南芥所必需的氨基酸转运蛋白。双突变体和RNAi系将用于评估遗传冗余和生理补偿。将对突变体进行研究,以确定对其他病原体感染的影响,以及相关表型是否是由于先天免疫反应的干扰。将在分子水平上检查转运蛋白的子集,以评估其差异表达和亚细胞定位对病原体营养获取的重要性。将确定氨基酸转运蛋白的生化特性和对跨质膜通量的影响,以确定它们在植物中的作用。最后,结合代谢组学和标记营养素的新方法将被用来测试氨基酸转运蛋白的病原体营养的重要性。项目参与者将通过植物研究和教育伙伴关系开展外联活动,高中生将在该伙伴关系中对转运蛋白突变体进行原创性研究。参与的科学家通过磨练他们讨论植物科学研究的全球影响及其项目的具体意义的能力而受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillaume Pilot其他文献
Elicitors of plant defense induce the accumulation of amino acids that suppress both bacterial virulence and growth
植物防御诱导子诱导氨基酸积累,抑制细菌毒力和生长
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaomu Zhang;Philip J. Tubergen;Israel D K Agorsor;Pramod Khadka;Connor Tempe;Eva Collakova;Guillaume Pilot;C. Danna - 通讯作者:
C. Danna
transporter activity Overexpression of stomatin depresses GLUT-1 glucose
转运蛋白活性 stomatin 的过度表达会抑制 GLUT-1 葡萄糖
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Wafa Abbud;R. Prohaska;F. Ismail;Guillaume Pilot;D. Bushey;Réjane Pratelli;Glutamine Dumper;M. Sitbon;N. Taylor;A. Montel;L. Blanc;Myriam Boyer;C. Jacquet;M. Vidal;Mario Mairhofer;Marianne Steiner;U. Salzer;S. Gospe;S. Baker;V. Arshavsky - 通讯作者:
V. Arshavsky
Induction of GLUTAMINE DUMPER1 reveals a link between amino acid export, abscisic acid, and immune responses
GLUTAMINE DUMPER1 的诱导揭示了氨基酸输出、脱落酸和免疫反应之间的联系
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shi Yu;Delasa Aghamirzaie;K. Harich;Eva Collakova;R. Grene;Guillaume Pilot - 通讯作者:
Guillaume Pilot
Mining for meaning: visualization approaches to deciphering Arabidopsis stress responses in roots and shoots.
挖掘意义:破译拟南芥根和芽应激反应的可视化方法。
- DOI:
10.1089/omi.2011.0111 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lecong Zhou;C. Franck;Kuan Yang;Guillaume Pilot;L. Heath;R. Grene - 通讯作者:
R. Grene
Suppressor mutations in the Glutamine Dumper1 protein dissociate disturbance in amino acid transport from other characteristics of the Gdu1D phenotype
谷氨酰胺转储器 1 蛋白的抑制突变将氨基酸转运的干扰与 Gdu1D 表型的其他特征分离
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:5.6
- 作者:
Shi Yu;Réjane Pratelli;C. Denbow;Guillaume Pilot - 通讯作者:
Guillaume Pilot
Guillaume Pilot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillaume Pilot', 18)}}的其他基金
Conference: 7th Pan American Plant Membrane Biology Workshop, Merida, Mexico, June 18-21 2023
会议:第七届泛美植物膜生物学研讨会,墨西哥梅里达,2023 年 6 月 18-21 日
- 批准号:
2328521 - 财政年份:2023
- 资助金额:
$ 76.16万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Molecular Architecture and Dynamics of Phenylalanine Biosynthesis in Plants
合作研究:阐明植物中苯丙氨酸生物合成的分子结构和动力学
- 批准号:
1519094 - 财政年份:2015
- 资助金额:
$ 76.16万 - 项目类别:
Standard Grant
相似国自然基金
LncRNA-G8在葡萄糖饥饿应激时调控肿瘤细胞DNA损伤修复的功能和机制研究
- 批准号:32000526
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
- 批准号:31970707
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
自噬信号调控自噬前体招募WIPI2蛋白的机制和功能
- 批准号:31970694
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
葡萄糖缺乏诱导的长链非编码RNA-GDLR促进肝癌细胞存活和增殖的作用及机制研究
- 批准号:91957108
- 批准年份:2019
- 资助金额:86.0 万元
- 项目类别:重大研究计划
相似海外基金
Single-Nuclei Sequencing Whole Aquatic Plants to Reveal Novel Nutrient Transport Mechanisms
对整个水生植物进行单核测序,揭示新的养分运输机制
- 批准号:
BB/Z514809/1 - 财政年份:2024
- 资助金额:
$ 76.16万 - 项目类别:
Fellowship
Mechanisms of endosomal trafficking in lipid droplet catabolism
脂滴分解代谢中的内体运输机制
- 批准号:
10714356 - 财政年份:2023
- 资助金额:
$ 76.16万 - 项目类别:
Molecular mechanisms underlying heme transport at the blood-brain barrier and its role in angiogenesis
血红素在血脑屏障转运的分子机制及其在血管生成中的作用
- 批准号:
10572752 - 财政年份:2023
- 资助金额:
$ 76.16万 - 项目类别:
Mitoribosome protein translation signaling and survival mechanisms
线粒体核糖体蛋白翻译信号传导和生存机制
- 批准号:
10714636 - 财政年份:2023
- 资助金额:
$ 76.16万 - 项目类别:
Subcellular mechanisms coupling lipid synthesis and methionine metabolism
脂质合成与蛋氨酸代谢耦合的亚细胞机制
- 批准号:
10712063 - 财政年份:2023
- 资助金额:
$ 76.16万 - 项目类别:
Mechanisms of membrane homeostasis through protein and lipid transport
通过蛋白质和脂质运输实现膜稳态的机制
- 批准号:
10544025 - 财政年份:2022
- 资助金额:
$ 76.16万 - 项目类别:
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
- 批准号:
10649407 - 财政年份:2022
- 资助金额:
$ 76.16万 - 项目类别:
Elucidating Molecular Mechanisms Linking Fructose to Cholesterol Metabolism
阐明果糖与胆固醇代谢之间的分子机制
- 批准号:
10367780 - 财政年份:2022
- 资助金额:
$ 76.16万 - 项目类别:
Elucidating Molecular Mechanisms Linking Fructose to Cholesterol Metabolism
阐明果糖与胆固醇代谢之间的分子机制
- 批准号:
10542839 - 财政年份:2022
- 资助金额:
$ 76.16万 - 项目类别: