IDBR: TYPE A: Mass-Sensing Nanostructure-Enhanced Laser Tweezers
IDBR:A 型:质量传感纳米结构增强激光镊子
基本信息
- 批准号:1353718
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Decscription: Understanding how cell size is controlled is a fundamental area of cell biology that has not been well understood. The size and mass of a cell convey important physiological properties that are closely regulated by various environmental and genetic factors. Characterizing the dependence of cell growth rate on cell mass for individual cells can elucidate the mechanisms underlying cell cycle progression, and there are also examples of human diseases characterized by increased cell size (hypertrophy) such as cardiac hypertrophy that can lead to heart failure and sudden death. In general, being able to monitor size and mass of single cells over time can provide important physiological information and has potential impact in cell biology, tissue engineering, cancer, and disease research. A barrier to studying size control in mammalian cells is the inaccuracy in measuring size, mass, growth rate, and the dynamics of pathways controlling growth and proliferation. Often the cell mass is estimated indirectly by measuring cell size, however, it has been shown that the mass density of a cell is not constant through its cell cycle. Recently, there has been research on using mechanical resonators to measure the cell mass directly. These approaches either require exquisite microfluidic structures and setup or are restricted to adherent cells. The locations of the cells on the mechanical resonators also cannot be accurately controlled, which limits the sensing accuracy. This project aims to develop a precise cell mass sensing and monitoring system that can work with both adherent and suspension cells by combining nanostructure-enhanced laser tweezers (NELT) with an array of MEMS resonators. This multi-disciplinary project will provide training opportunities for two graduate students, one postdoc, and NSF REU program will be pursued to provide research experience for undergraduate students. The PI and her group will continue participating in education outreach activities through UW College of Engineering Discovery Days for K-12 students. New education materials resulting from the research will be incorporated in the outreach demo activities.Technical Decscription: The proposed approach utilizes high efficiency optical trapping on a photonic crystal (PhC) platform that has been demonstrated by the PI's group. The system integrates PhC nanostructures on the surface of an array of MEMS resonators to achieve precise placement of live cells on the resonators with low optical intensity. The MEMS resonator consists of a suspended micro-disk structure whose resonant frequency depends on its mass. Cell mass will be measured by characterizing the resonant frequencies of the MEMS resonators. The platform will be placed under a fluorescence microscope for optical imaging and analysis. This system does not require exquisite microfluidic setup and can simultaneously achieve the following functions: (1) Suitable for both adherent and suspension cells. (2) High-precision measurement of a cell mass versus time, or single-point mass measurement in time with high throughput. (3) Optical imaging of an array of cells as a function of time to obtain size and other information on cell status. This project seeks to achieve the following aims: (A) Design and fabricate PhC nanostructures to achieve optical trapping with low intensity for live cells. Finite-difference time domain (FDTD) simulations will be used to design and optimize the PhC nanostructures to achieve highest trapping enhancement for the specific size of cells or particles. The PhC will be fabricated on a regular Si substrate first then integrated with the MEMS resonators. Optical trapping will be performed for polystyrene beads with various sizes to confirm that enhanced trapping efficiency can be achieved. (B) Design and fabricate PhC-integrated MEMS resonators to achieve mass-sensing with high accuracy. The same particle will be released and re-trapped on the MEMS resonator, and frequency response re-measured. The process will be repeated to allow assessing mass-sensing accuracy. (C) Perform mass sensing and monitoring of adherent and suspension cells. Cells will be synchronized in their cell cycle using serum starvation, thymidine-nocodazole block and double thymidine block for cell mass measurement. An array of reconfigurable optical traps will be set up using a spatial light modulator for the study. A dissemination plan for the proposed instrument will be implemented with the project. The plan involves disseminating the research results and the capability of the instrument through technical conferences, publications, and the PI's research group website; working with UW Center for Commercialization to seek licensing and commercialization of the proposed technology.
非技术描述:了解细胞大小是如何控制的是细胞生物学的一个基本领域,尚未得到很好的理解。细胞的大小和质量传达了重要的生理特性,这些生理特性受到各种环境和遗传因素的密切调节。表征细胞生长速率对单个细胞的细胞质量的依赖性可以阐明细胞周期进展的潜在机制,并且还有以细胞大小增加(肥大)为特征的人类疾病的实例,例如可导致心力衰竭和猝死的心脏肥大。一般来说,能够随时间监测单细胞的大小和质量可以提供重要的生理信息,并在细胞生物学,组织工程,癌症和疾病研究中具有潜在的影响。研究哺乳动物细胞大小控制的一个障碍是测量大小、质量、生长速率以及控制生长和增殖的途径的动力学的不准确性。通常通过测量细胞大小来间接估计细胞质量,然而,已经表明细胞的质量密度在其细胞周期中不是恒定的。近来,已经研究了使用机械谐振器来直接测量细胞质量。这些方法要么需要精致的微流体结构和设置,要么仅限于贴壁细胞。机械谐振器上的单元的位置也不能被精确地控制,这限制了感测精度。该项目旨在开发一种精确的细胞质量传感和监测系统,该系统可以通过将纳米结构增强激光镊子(NELT)与MEMS谐振器阵列相结合来处理粘附细胞和悬浮细胞。这个多学科项目将为两名研究生,一名博士后提供培训机会,NSF REU计划将为本科生提供研究经验。PI和她的团队将继续通过UW工程学院为K-12学生举办的探索日活动参与教育推广活动。新的教育材料将从研究中产生的推广演示活动。技术说明:所提出的方法利用高效率的光子晶体(PhC)平台上的光捕获,已被PI的小组证明。该系统将PhC纳米结构集成在MEMS谐振器阵列的表面上,以实现活细胞在具有低光强度的谐振器上的精确放置。MEMS谐振器由一个悬浮的微盘结构组成,其谐振频率取决于其质量。将通过表征MEMS谐振器的谐振频率来测量细胞质量。将平台置于荧光显微镜下进行光学成像和分析。该系统不需要精密的微流控装置,可同时实现以下功能:(1)适用于贴壁细胞和悬浮细胞。(2)高精度测量细胞质量与时间的关系,或以高通量及时进行单点质量测量。(3)作为时间函数的细胞阵列的光学成像,以获得关于细胞状态的大小和其他信息。本项目旨在实现以下目标:(A)设计和制造PhC纳米结构,以实现对活细胞的低强度光捕获。时域有限差分法(FDTD)模拟将用于设计和优化PhC纳米结构,以实现特定尺寸的细胞或颗粒的最高捕获增强。首先在常规硅衬底上制作PhC,然后将其与MEMS谐振器集成。将对不同尺寸的聚苯乙烯珠粒进行光学捕获,以确认可以实现增强的捕获效率。(B)设计并制作集成PhC的MEMS谐振器,以实现高精度的质量传感。相同的颗粒将被释放并重新捕获在MEMS谐振器上,并且重新测量频率响应。将重复该过程以允许评估质量感测准确度。(C)对贴壁细胞和悬浮细胞进行质量传感和监测。使用血清饥饿、胸苷-诺考达唑阻断和双胸苷阻断使细胞在其细胞周期中同步,以测量细胞质量。利用空间光调变器,将可重新组态的光阱阵列建立于研究中。拟议文书的传播计划将与该项目一起执行。该计划包括通过技术会议,出版物和PI的研究小组网站传播研究结果和仪器的能力;与UW商业化中心合作,寻求拟议技术的许可和商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lih Lin其他文献
5.0 Custom Integrated Circuits Academic and Research Staff
5.0 定制集成电路学术和研究人员
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. Musicus;Wyatt;Standley;B. Thompson;H. Wright;Robert;Armstrong;Donald;Baltus;C. Bamji;L. Brocco;Charles E. Hauck;Lih Lin;S. McCormick - 通讯作者:
S. McCormick
Lih Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lih Lin', 18)}}的其他基金
BRITE Pivot: Accelerating Manufacturing and Realization of Perovskite Micro-Light Emitting Device (Micro-LED) Displays through Data-driven Learning
BRITE Pivot:通过数据驱动学习加速钙钛矿微发光器件 (Micro-LED) 显示器的制造和实现
- 批准号:
2227285 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
PFI-TT: Enabling Advanced High-Resolution Full-Color Displays with New Color Conversion Technologies
PFI-TT:利用新的色彩转换技术实现先进的高分辨率全彩显示器
- 批准号:
2140788 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
OP: Towards Electrically Pumped Perovskite Quantum Dot Lasers
OP:走向电泵浦钙钛矿量子点激光器
- 批准号:
1807397 - 财政年份:2018
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Nanoscale quantum dot photodetectors with high integratability for nanophotonic integrated circuits
用于纳米光子集成电路的高集成度纳米级量子点光电探测器
- 批准号:
0925378 - 财政年份:2009
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Micro-Instrumentation for Optical Manipulation of Biological Cells with Fine Orientation Control and Low Optical Intensity
用于生物细胞光学操纵的微仪器,具有精细方向控制和低光学强度
- 批准号:
0454324 - 财政年份:2005
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
- 批准号:LQ22H020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
- 批准号:32102053
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
- 批准号:62120106002
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
- 批准号:LQ21C140001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
Robust Mass Spectrometric Protein/Peptide Assays for Type 1 Diabetes Clinical Applications
适用于 1 型糖尿病临床应用的稳健质谱蛋白质/肽检测
- 批准号:
10730900 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Development of a Fourier-transform type miniature mass spectrometer for space use
空间用傅里叶变换型微型质谱仪的开发
- 批准号:
21J10032 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A new type of accretion flow in high-mass X-ray binaries with circumstellar disks
具有星周盘的高质量 X 射线双星中的一种新型吸积流
- 批准号:
21K03619 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of projection-type imaging mass spectrometer using polarization-time mapping
利用偏振时间映射的投影型成像质谱仪的开发
- 批准号:
20K21157 - 财政年份:2020
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of beam-through-type gas-cell for mass measurement of proton-rich nuclei
开发用于富质子核质量测量的穿束式气室
- 批准号:
19K14750 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Histological analysis of the associations between maximum body mass index before onset of type 2 diabetes and pancreatic beta-cell characteristics
2 型糖尿病发病前最大体重指数与胰腺 β 细胞特征之间关联的组织学分析
- 批准号:
19K09024 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IDBR: TYPE A - Development of an In situ Single-cell Mass Spectrometer for Mapping Small-molecule Expression in the Developing Embryo
IDBR:A 型 - 开发用于绘制发育中胚胎中小分子表达图谱的原位单细胞质谱仪
- 批准号:
1826932 - 财政年份:2018
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
Unveiling the nature of a new-type episodic mass-loss phenomenon
揭示新型间歇性质量损失现象的本质
- 批准号:
18K03714 - 财政年份:2018
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of heat and mass transport phenomena of heat cluster type geothermal heat pump
澄清热团簇式地源热泵的传热传质现象
- 批准号:
17K07035 - 财政年份:2017
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)