I-Corps: Electroactive Scaffold for Cartilage Repair

I-Corps:用于软骨修复的电活性支架

基本信息

  • 批准号:
    1355718
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-12-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

Joint repair continues to be a significant challenge that demands the use of innovative materials that can provide both mechanical and biological function. The I-Corps team is developing an electroactive scaffold that mimics both structural and electrical properties of the native extracellular matrix present during early cartilage development to repair articular cartilage defects. This biomaterial represents a different, cost-effective and simple approach to tapping into a biological mechanism for repairing damaged articular cartilage. The joint environment appears to be rich in mesenchymal progenitor cells, which have been isolated from the bone marrow, periosteum, synovial membrane and fluid, and from the articular cartilage itself. A regenerative approach for joint tissue repair could be the recruitment of resident endogenous stem cells to the site of damage and activation of the repair process. The electroactive scaffold is a synthetic material, piezoelectric polyvinylidine fluoride copolymer (FDA-approved material for suture applications), that is processed into a fibrous form. Fibrous scaffolds have a beneficial structural feature for cell adhesion and growth due to their large surface-to-volume and high aspect ratios resulting from the smallness of the diameter. The piezoelectric scaffold will actively restore function by recruiting endogenous stem cells to the site of damage, and provide the appropriate electromechanical cues to promote their growth and transformation into cartilage cells. A significant number of Americans suffer from cartilage damage resulting from injury, or wear and tear. These lesions can significantly affect a person's quality of life and can progress to osteoarthritis (OA) that is disabling. Cartilage damage and related OA conditions are extremely costly. Surgical procedures to restore articular cartilage have not been able to restore a normal cartilaginous surface and have suffered from poor integration with the surrounding normal articular cartilage. Consequently, a growing unmet need exists for early reconstruction of cartilage damage with a reliable treatment method that facilitates the preservation of function as well as reduces the need for future reconstruction or total joint replacements. The piezeoelectric material will be developed into a medical device for use in large cartilage defects. The commercialization potential is strong as it does not require the sale and delivery of cells as part of the device and cost effective relative to other devices in development by industry.
关节修复仍然是一个重大挑战,需要使用能够提供机械和生物功能的创新材料。I-Corps团队正在开发一种电活性支架,该支架模拟早期软骨发育过程中存在的天然细胞外基质的结构和电学特性,以修复关节软骨缺损。这种生物材料代表了一种不同的、具有成本效益的和简单的方法,可以利用生物机制来修复受损的关节软骨。关节环境似乎富含间充质祖细胞,其已从骨髓、骨膜、滑膜和流体以及关节软骨本身分离。关节组织修复的再生方法可以是将驻留的内源性干细胞募集到损伤部位并激活修复过程。电活性支架是一种合成材料,压电聚偏二氟乙烯共聚物(FDA批准用于缝合应用的材料),可加工成纤维状。纤维支架具有有利于细胞粘附和生长的结构特征,这是由于其大的表面积与体积比和由直径小引起的高纵横比。压电支架将通过将内源性干细胞募集到损伤部位来主动恢复功能,并提供适当的机电提示以促进其生长和转化为软骨细胞。相当多的美国人遭受软骨损伤造成的伤害,或磨损。这些病变可以显着影响一个人的生活质量,并可能进展为骨关节炎(OA),这是致残。软骨损伤和相关的OA条件是非常昂贵的。恢复关节软骨的外科手术不能恢复正常的软骨表面,并且与周围正常的关节软骨的整合较差。因此,对于利用可靠的治疗方法早期重建软骨损伤存在日益增长的未满足的需求,所述治疗方法促进功能的保留以及减少对未来重建或全关节置换的需求。这种压电材料将被开发成用于大型软骨缺损的医疗器械。商业化潜力很强,因为它不需要销售和递送细胞作为装置的一部分,并且相对于工业开发中的其他装置具有成本效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Treena Livingston其他文献

Treena Livingston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Treena Livingston', 18)}}的其他基金

ADVANCE Partnership: New Jersey Equity in Commercialization Collective (NJECC)
ADVANCE 合作伙伴关系:新泽西州股权商业化集体 (NJECC)
  • 批准号:
    2300380
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: New Jersey Equity in Commercialization Collective (NJECC)
ADVANCE 合作伙伴关系:新泽西州股权商业化集体 (NJECC)
  • 批准号:
    2121941
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Electroactive Scaffold for Cartilage Regeneration: A Proof of Concept Study
PFI:AIR - TT:用于软骨再生的电活性支架:概念研究验证
  • 批准号:
    1700945
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Exploiting the Bifunctional Properties of Zinc Oxide as a Smart Biomimetic Material
利用氧化锌的双功能特性作为智能仿生材料
  • 批准号:
    1610125
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
A Biologically Inspired Material for Stem-Cell Induced Cartilage Repair
用于干细胞诱导软骨修复的生物启发材料
  • 批准号:
    1207173
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Electrically Active Scaffold for Stem Cell Differentation
用于干细胞分化的电活性支架
  • 批准号:
    1006510
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
PECASE: A Systematic Approach in Determining Material Surface Properties that Promote Stem Cell Differentiation
PECASE:确定促进干细胞分化的材料表面特性的系统方法
  • 批准号:
    0238787
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
  • 批准号:
    2327516
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
  • 批准号:
    2327515
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RENEWABLE RESOURCES AND CLEAN GROWTH - Developing electroactive materials formed through biological processes for energy storage applications
可再生资源和清洁增长 - 开发通过生物过程形成的电活性材料用于储能应用
  • 批准号:
    2890741
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
3D Bipolar Electroactive Architectures for Wireless BioStimulation
用于无线生物刺激的 3D 双极电活性架构
  • 批准号:
    DP230101369
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Development of Multi-functional Electroactive Fibers for Electrophysiology Applications
用于电生理学应用的多功能电活性纤维的开发
  • 批准号:
    547502-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Electroactive Self-Assembled Monolayers: Putting Surface-Confined Redox Reactions to Work
电活性自组装单层膜:使表面限制的氧化还原反应发挥作用
  • 批准号:
    RGPIN-2019-04883
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Preparation of electroactive low dimensional materials for advanced electrocatalysis and sensors applications
用于先进电催化和传感器应用的电活性低维材料的制备
  • 批准号:
    RGPIN-2022-05089
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Functional Electroactive 2D-Materials for Bio and Chemical Sensing
用于生物和化学传感的功能性电活性二维材料
  • 批准号:
    CRC-2020-00313
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Canada Research Chairs
Electroactive Self-Assembled Monolayers: Putting Surface-Confined Redox Reactions to Work
电活性自组装单层膜:使表面限制的氧化还原反应发挥作用
  • 批准号:
    RGPIN-2019-04883
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Multi-functional Electroactive Fibers for Electrophysiology Applications
用于电生理学应用的多功能电活性纤维的开发
  • 批准号:
    547502-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了